| A. | (0,$\frac{π}{6}$] | B. | [$\frac{π}{6},π$) | C. | (0,$\frac{π}{3}$] | D. | [$\frac{π}{3},π$) |
分析 由已知及正弦定理可得:a2≤b2+c2-bc,利用余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$$≥\frac{1}{2}$,从而可求得A的取值范围.
解答 解:∵(sinA+sinB)(sinA-sinB)≤sinC(sinC-sinB),
∴由正弦定理可得:a2≤b2+c2-bc,
∴bc≤b2+c2-a2,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$$≥\frac{1}{2}$,
∴0$<A≤\frac{π}{3}$.
故选:C.
点评 本题主要考查了正弦定理,余弦定理,三角形内角和定理等知识的应用,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 16$\sqrt{3}$ | C. | 8 | D. | 8$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{4}$,$\frac{π}{2}$) | B. | [$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,π) | C. | [0,$\frac{π}{3}$]∪($\frac{2π}{3}$,π) | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com