精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的参数方程是为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(1)求曲线交点的极坐标;

(2)两点分别在曲线上,当最大时,求的面积(为坐标原点)

【答案】(Ⅰ) ; (II).

【解析】

I)将曲线的参数方程消去参数的直角坐标方程,利用极坐标与直角坐标关系将的极坐标方程化为直角坐标方程,把两曲线的直角坐标方程列方程组求交点坐标.

II)利用圆的性质,当A,B在两圆圆心连线上且相距最远时最大。由及O的距离计算三角形OAB面积.

(I)由

两式平方作和得:,即.①

,即

②-①:,代入曲线的方程得交点为.

(II)由平面几何知识可知,当依次排列且共线时最大,

此时到直线的距离为

所以,的面积为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且.

(1)求椭圆的方程;

(2)过椭圆的右焦点作斜率为1的直线与椭圆交于两点,试在轴上求一点,使得以为邻边的平行四边形是菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足为常数,),给出下列四个结论:①若数列是周期数列,则周期必为2:②若,则数列必是常数列:③若,则数列是递增数列:④若,则数列是有穷数列,其中,所有错误结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】101日,某品牌的两款最新手机(记为型号,型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在101日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到下表:

手机店

型号手机销量

6

6

13

8

11

型号手机销量

12

9

13

6

4

(Ⅰ)若在101日当天,从这两个手机店售出的新款手机中各随机抽取1部,求抽取的2部手机中至少有一部为型号手机的概率;

(Ⅱ)现从这5个手机店中任选3个举行促销活动,用表示其中型号手机销量超过型号手机销量的手机店的个数,求随机变量的分布列和数学期望;

(III)经测算,型号手机的销售成本(百元)与销量(部)满足关系.若表中型号手机销量的方差,试给出表中5个手机店的型号手机销售成本的方差的值.(用表示,结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自201911日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

个人所得税税率表(调整前)

个人所得税税率表(调整后)

免征额3500

免征额5000

级数

全月应纳税所得额

税率(

级数

全月应纳税所得额

税率(

1

不超过1500元部分

3

1

不超过3000元部分

3

2

超过1500元至4500元的部分

10

2

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

3

超过12000元至25000元的部分

20

1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;

2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

收入

(元)

人数

30

40

10

8

7

5

先从收入在的人群中按分层抽样抽取7人,再从中选2人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;

3)小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非空集合满足.若存在非负整数,使得当时,均有,则称集合具有性质.记具有性质的集合的个数为.

(1)求的值;

(2)求的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过且斜率为的直线与抛物线交于两点,轴的上方,且点的横坐标为4.

(1)求抛物线的标准方程;

(2)设点为抛物线上异于的点,直线分别交抛物线的准线于两点,轴与准线的交点为,求证:为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳(为常数,)的管理费.根据多年的统计经验,预计当每件产品的售价为元时,产品一年的销售量为为自然对数的底数)万件.已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价最低不低于35元,最高不超过41元.

(Ⅰ)求分公司经营该产品一年的利润万元与每件产品的售价元的函数关系式;

(Ⅱ)当每件产品的售价为多少元时,该产品一年的利润最大,并求的最大值.

查看答案和解析>>

同步练习册答案