精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{2x,(x≤-1)}\\{1,(-1<x≤1)}\\{-2x,(x>1)}\end{array}\right.$
(1)求f(x)的定义域、值域:
(2)作出这个函数的图象.

分析 (1)根据分段函数,可得f(x)的定义域、值域:
(2)根据分段函数作出这个函数的图象.

解答 解:(1)由题意,f(x)的定义域是R,值域是(-∞,-2]∪{1};
(2)作出这个函数的图象,如图所示.

点评 本题考查分段函数,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若动△ABC内接于抛物线y2=4x,且△ABC的重心恰好是抛物线的焦点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.己知数列{an}的各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2
(I)求出a1,a2的值,并求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,平行四边形ABCD中,AE:EB=1:2.
( I)求△AEF与△CDF的周长比;
( II)如果△AEF的面积等于6cm2,求△CDF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,(an,Sn)在函数y=2-x的图象上.
(1)求an
(2)若数列{bn}满足b1=1,bn+1=bn+an,求bn
(3)在(2)的条件下,设cn=1og${\;}_{\frac{1}{2}}$a2n,Tn=$\frac{4}{{c}_{1}{c}_{2}}$+$\frac{4}{{c}_{2}{c}_{3}}$+…+$\frac{4}{{c}_{n}{c}_{n+1}}$,若不等式bn+Tn>m-2013对一切正整数n都成立的,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,AE、AF分别为△ABC的内、外角平分线,O为EF的中点.
求证:OB:OC=AB2:AC2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知边长为2的正六边形ABCDEF中,连接BE、CE,点G是线段BE上靠近B的四等分点,连接GF,则$\overrightarrow{GF}$•$\overrightarrow{CE}$=(  )
A.-6B.-9C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设无穷数列{an}的前n项和为Sn,若存在常数k,满足Sn≥k$\sqrt{n}$对一切的n∈N*成立,则称数列{an}为“k数列”
(1)求证:数列{1-2n}不是“k数列”;
(2)求证:数列{n-5}是“k数列”,并求出k的最大值.

查看答案和解析>>

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(文)试卷(解析版) 题型:选择题

设集合M={x|-1≤x<2},N={y|y<a},若M∩N≠∅,则实数a的取值范围一定是( )

A.[-1,2) B.(-∞,2] C.[2,+∞) D.(-1,+∞)

查看答案和解析>>

同步练习册答案