精英家教网 > 高中数学 > 题目详情
6.已知偶函数y=f(x)(x∈R)在区间[0,3]上单调递增,在区间[3,+∞)上单调递减,且满足f(-4)=f(1)=0,则不等式f(x)<0的解集是(  )
A.(-4,-1)∪(1,4)B.(-∞,-4)∪(-1,1)∪(4,+∞)C.(-∞,-4)∪(-1,0)∪(1,4)D.(-4,-1)∪(0,1)∪(4,+∞)

分析 由题意和函数的奇偶性与单调性的关系,画出函数f(x)的示意图,根据图象求出不等式的解集.

解答 解:由题意画出函数f(x)的示意图:
如图所示:
由图得,等式f(x)<0的解集是:
(-4,-1)∪(1,4),
故选A.

点评 本题考查函数的奇偶性与单调性的关系的应用,考查抽象不等式的求解,数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=3x,f(a+2)=27,函数g(x)=λ•2ax-4x的定义域为[0,2].
(1)求a的值;
(2)若λ=2,试判断函数g(x)在[0,2]上的单调性,并加以证明;
(3)若函数g(x)的最大值是$\frac{1}{3}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.完成下列两项调查:
①一项对“小彩旗春晚连转四小时”的调查中有10 000人认为这是成为优秀演员的必经之路,有9 000人认为太残酷,有1 000人认为无所谓.现要从中随机抽取200人做进一步调查.
②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是(  )
A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样
C.①系统抽样,②分层抽样D.①②都用分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.f(x)=$\left\{\begin{array}{l}{lo{g}_{2}({2}^{x}-8),x>3}\\{f(x+2),x≤3}\end{array}\right.$ 则f(0)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从集合A={d,V,W}到集合B={0,1}的所有映射的个数为(  )
A.0B.2C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆心坐标为(4,0)且经过点(0,3)的圆的方程是(  )
A.x2+(y-4)2=25B.(x-4)2+y2=25C.x2+(y-4)2=25D.(x+4)2+y2=25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为($\sqrt{3}$,0).
(1)求双曲线C的方程;
(2)若直线l:y=x+2与双曲线交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“数列{an}前n项和是Sn=An2+Bn+C的形式,则数列{an}为等差数列”的逆命题,否命题,逆否命题这三个命题中,真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若偶函数y=f(x)对任意实数x都有f(x+2)=-f(x),且在〔-2,0〕上为单调递减函数,则(  )
A.$f(\frac{11}{2})>f(\frac{11}{3})>f(\frac{11}{4})$B.$f(\frac{11}{4})>f(\frac{11}{2})>f(\frac{11}{3})$C.$f(\frac{11}{2})>f(\frac{11}{4})>f(\frac{11}{3})$D.$f(\frac{11}{3})>f(\frac{11}{4})>f(\frac{11}{2})$

查看答案和解析>>

同步练习册答案