精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-
3
2
x-k=0,x∈(-1,1)}
,若集合A有且仅有一个元素,则实数k的取值范围是(  )
A.(-
1
2
5
2
)∪{-
9
16
}
B.(
1
2
5
2
)
C.[-
9
16
5
2
)
D.[-
9
16
,+∞)
集合A={x|x2-
3
2
x-k=0,x∈(-1,1)}
,若集合A有且仅有一个元素,
x2-
3
2
x-k=0,x∈(-1,1)
仅有一个根,或△=0.
∴f(-1)f(1)=(1+
3
2
-k
)(1-
3
2
-k
)<0,或△=0,
(k-
5
2
)(k+
1
2
)<0
得k∈(-
1
2
5
2
)

解△=0,即(-
3
2
)2+4k=0
,k=-
9
16
,此时x=
3
4
∈(-1,1).
综上k∈(-
1
2
5
2
)∪{-
9
16
}

故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如果关于x的方程ax+
1
x2
=3
在区间(0,+∞)上有且仅有一个解,那么实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x-[x],其中[x]表示不超过实数x的最大整数.若关于x的方程f(x)=kx+k有三个不同的实根,则实数k的取值范围是(  )
A.[-1,-
1
2
)∪(
1
4
1
3
]
B.(-1,-
1
2
]∪[
1
4
1
3
)
C.[-
1
3
,-
1
4
)∪(
1
2
,1]
D.(-
1
3
,-
1
4
]∪[
1
2
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在[1,+∞)上的函数f(x)=
4-|8x-12|,1≤x≤2
1
2
f(
x
2
),x>2
,则(  )
A.函数f(x)的值域为[1,4]
B.关于x的方程f(x)-
1
2n
=0(n∈N*)有2n+4个不相等的实数根
C.当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的面积为2
D.存在实数x0,使得不等式x0f(x0)>6成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x0是函数f(x)=x2+log2x的零点,若有0<a<x0,则f(a)的值满足(  )
A.f(a)=0B.f(a)>0
C.f(a)<0D.f(a)的符号不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x|x-2m|,常数m∈R.
(1)设m=0.求证:函数f(x)递增;
(2)设m=-1.求关于x的方程f(f(x))=0的解的个数;
(3)设m>0.若函数f(x)在区间[0,1]上的最大值为m2,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x-2
ax+1
(a>1,x∈R,x≠-
1
a
)

(1)试问:该函数的图象上是否存在不同的两点,它们的函数值相同,请说明理由;
(2)若函数F(x)=ax+f(x),试问:方程F(x)=0有没有负根,请说明理由.
(3)记G(x)=|ax-b|-b•ax,(x∈R),若G(x)有最小值,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线l和圆C,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=ln
ex-e-x
ex+e-x
的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案