精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-[x],其中[x]表示不超过实数x的最大整数.若关于x的方程f(x)=kx+k有三个不同的实根,则实数k的取值范围是(  )
A.[-1,-
1
2
)∪(
1
4
1
3
]
B.(-1,-
1
2
]∪[
1
4
1
3
)
C.[-
1
3
,-
1
4
)∪(
1
2
,1]
D.(-
1
3
,-
1
4
]∪[
1
2
,1)
函数f(x)=x-[x]的图象如下图所示:

y=kx+k表示恒过A(-1,0)点斜率为k的直线
若方程f(x)=kx+k有3个相异的实根.
则函数f(x)=x-[x]与函数f(x)=kx+k的图象有且仅有3个交点
由图可得:
当y=kx+k过(2,1)点时,k=
1
3

当y=kx+k过(3,1)点时,k=
1
4

当y=kx+k过(-2,1)点时,k=-1,
当y=kx+k过(-3,1)点时,k=-
1
2

则实数k满足
1
4
≤k<
1
3
或-1<k≤-
1
2

故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知函数(Ⅰ)若,求方程的解(Ⅱ)若关于x的方程在(0,2)上有两个解,求k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b,c分别是方程x+log2x=0,x2+log2x=0,x-1-log2x=0的实根,则(  )
A.a<b<cB.c<b<aC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等比数列{an}中,a2,a6时方程x2-34x+64=0的两根,则a4等于(  )
A.8B.-8C.±8D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数y=f(x)(x∈R)满足f(x+2)=f(x)且x∈(-1,1]时f(x)=1-x2,函数g(x)=
lg|x|(x≠0)
1(x=0)
,则函数h(x)=f(x)-g(x)在区间[-5,10]内零点的个数为(  )
A.12B.14C.13D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程2x+3x=7有唯一实根x0,则x0必在区间(  )
A.(
1
2
,1)
B.(1,
4
3
C.(
4
3
3
2
D.(
3
2
,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2kx2+kx-
3
8

(1)若f(x)有零点,求k的取值范围;
(2)若f(x)<0对一切x∈R都成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=
x2+bx+c,x≤0
3,x>0
,若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知集合A={x|x2-
3
2
x-k=0,x∈(-1,1)}
,若集合A有且仅有一个元素,则实数k的取值范围是(  )
A.(-
1
2
5
2
)∪{-
9
16
}
B.(
1
2
5
2
)
C.[-
9
16
5
2
)
D.[-
9
16
,+∞)

查看答案和解析>>

同步练习册答案