精英家教网 > 高中数学 > 题目详情
10.已知定点A(-5,0),B(5,4),点P为双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上右支上任意一点,求|PB|-|PA|的最大值.

分析 设双曲线左焦点为F2,根据双曲线的定义可知|PB|-|PA|=|PB|-|PF2|-2a,进而可知当P、F2、B三点共线时有最大值,根据双曲线方程可求的F2的坐标,利用两点间的距离公式求得答案.

解答 解:由双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1可知A(-5,0),是双曲线的左焦点,设双曲线左焦点为F2
则|PB|-|PA|=|PB|-|PF2|-2a,|PB|-|PF2|≤|BF2|,
当P、F2、B三点共线时有最大值|BF2|=4,而对于这个双曲线,2a=8,
所以最大值为4-8=-4.

点评 本题主要考查了双曲线的应用.解题的过程灵活运用了双曲线的定义和用数形结合的方法解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分割为 F1,F2,左右端点分别为曲 A1,A2,抛物线 y2=4x与椭圆相交于A,B两点且其焦点与 F2重合,AF2=$\frac{5}{3}$
(Ⅰ)求椭圆的方程;
(Ⅱ)过点 $(\frac{2}{7},0)$作直线 l与椭圆相交于P,Q两点(不与 A1,A2重合),求 $\overrightarrow{{A_2}P}$与 $\overrightarrow{{A_2}Q}$夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)若存在x0>1,满足f(x0)-k(x0-1)<0,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{\sqrt{6+x-{x}^{2}}}{lo{g}_{2}x-1}$的定义域用区间表示为[-2,2)∪(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知${∫}_{0}^{t}$xdx=2,则${∫}_{-t}^{0}$xdx等于(  )
A.0B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设向量$\overrightarrow{a}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),$\overrightarrow{b}$=(sin$\frac{3x}{2}$,cos$\frac{3x}{2}$),x∈[0,$\frac{π}{2}$].
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+$\sqrt{2}$m|$\overrightarrow{a}$+$\overrightarrow{b}$|(m∈R),求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A={x|x2-3x+2≤0},B={x}x2-(a+1)x+a≤0}.
(1)若A⊆B,求a的取值范围;
(2)若B⊆A,求a的取值范围;
(3)若A∩B为仅含有一个元素的集合,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛掷两枚硬币,已知第一枚是正面,则第二枚也是正面的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-2x-4,g(x)=x2+(a2-1)x+(a-2)(a∈R).
(1)当x>2时,求证:f(x)>0;
(2)求证:对任意a∈R,函数g(x)必存在两个零点;
(3)若函数g(x)两个零点均比1小或另一零点比1小,另一个零点比1大,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案