精英家教网 > 高中数学 > 题目详情
15.如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,
(Ⅰ)证明:平面AEF⊥平面B1BCC1
(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F-AEC的体积.

分析 (Ⅰ)证明AE⊥BB1,AE⊥BC,BC∩BB1=B,推出AE⊥平面B1BCC1,利用平面余平米垂直的判定定理证明平面AEF⊥平面B1BCC1
(Ⅱ)取AB的中点G,说明直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,求出棱锥的高与底面面积即可求解几何体的体积.

解答 (Ⅰ)证明:∵几何体是直棱柱,∴BB1⊥底面ABC,AE?底面ABC,∴AE⊥BB1
∵直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E分别是BC的中点,
∴AE⊥BC,BC∩BB1=B,∴AE⊥平面B1BCC1
∵AE?平面AEF,∴平面AEF⊥平面B1BCC1
(Ⅱ)解:取AB的中点G,连结A1G,CG,由(Ⅰ)可知CG⊥平面A1ABB1
直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,则A1G=CG=$\sqrt{3}$,
∴AA1=$\sqrt{{A}_{1}{G}^{2}-{AG}^{2}}$=$\sqrt{2}$,CF=$\frac{\sqrt{2}}{2}$.
三棱锥F-AEC的体积:$\frac{1}{3}$×$\frac{1}{2}×CE•AE•CF$=$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}}{12}$.

点评 本题考查几何体的体积的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若等比数列{an}中,a2+a5+a11=2,a5+a8+a14=6,则a2+a5+a8+a11+a14的值为(  )
A.8B.大于8C.$\frac{242}{31}$D.$\frac{240}{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,a=4,b=5,c=6,则$\frac{sin2A}{sinC}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是乙;
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是数学.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=$\frac{新工件的体积}{原工件的体积}$)(  )
A.$\frac{8}{9π}$B.$\frac{8}{27π}$C.$\frac{24(\sqrt{2}-1)^{3}}{π}$D.$\frac{8(\sqrt{2}-1)^{3}}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=(  )
A.2$\sqrt{6}$B.8C.4$\sqrt{6}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法和理由);
(2)求直线AF与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z满足(z-1)i=1+i,则z=(  )
A.-2-iB.-2+iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.Sn为数列{an}的前n项和,己知an>0,an2+2an=4Sn+3
(I)求{an}的通项公式:
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案