分析 (Ⅰ)证明AE⊥BB1,AE⊥BC,BC∩BB1=B,推出AE⊥平面B1BCC1,利用平面余平米垂直的判定定理证明平面AEF⊥平面B1BCC1;
(Ⅱ)取AB的中点G,说明直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,求出棱锥的高与底面面积即可求解几何体的体积.
解答
(Ⅰ)证明:∵几何体是直棱柱,∴BB1⊥底面ABC,AE?底面ABC,∴AE⊥BB1,
∵直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E分别是BC的中点,
∴AE⊥BC,BC∩BB1=B,∴AE⊥平面B1BCC1,
∵AE?平面AEF,∴平面AEF⊥平面B1BCC1;
(Ⅱ)解:取AB的中点G,连结A1G,CG,由(Ⅰ)可知CG⊥平面A1ABB1,
直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,则A1G=CG=$\sqrt{3}$,
∴AA1=$\sqrt{{A}_{1}{G}^{2}-{AG}^{2}}$=$\sqrt{2}$,CF=$\frac{\sqrt{2}}{2}$.
三棱锥F-AEC的体积:$\frac{1}{3}$×$\frac{1}{2}×CE•AE•CF$=$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}}{12}$.
点评 本题考查几何体的体积的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 大于8 | C. | $\frac{242}{31}$ | D. | $\frac{240}{41}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{9π}$ | B. | $\frac{8}{27π}$ | C. | $\frac{24(\sqrt{2}-1)^{3}}{π}$ | D. | $\frac{8(\sqrt{2}-1)^{3}}{π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{6}$ | B. | 8 | C. | 4$\sqrt{6}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com