精英家教网 > 高中数学 > 题目详情
11.点M的球坐标(π,$\frac{π}{3}$,$\frac{π}{3}}$)化为直角坐标为(  )
A.(1,0,0)B.$({\frac{{\sqrt{3}}}{4},\frac{3}{4},\frac{1}{2}})$C.$({\frac{{\sqrt{3}}}{4}π,\frac{3}{4}π,\frac{π}{2}})$D.$({\frac{3}{4}π,\frac{{\sqrt{3}}}{4}π,\frac{π}{2}})$

分析 利用球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ,y=rsinθsinφ,z=rcosθ,代入可得M的直角坐标.

解答 解:∵M的球坐标为(π,$\frac{π}{3}$,$\frac{π}{3}$),
∴r=π,θ=$\frac{π}{3}$,φ=$\frac{π}{3}$,
∴x=rsinθcosφ=π•$\frac{\sqrt{3}}{2}$•$\frac{1}{2}$=$\frac{\sqrt{3}}{4}$π,
y=rsinθsinφ=π•$\frac{\sqrt{3}}{2}$•$\frac{\sqrt{3}}{2}$=$\frac{3}{4}$π,
z=rcosθ=π•$\frac{1}{2}$=$\frac{π}{2}$.
故M的直角坐标为($\frac{\sqrt{3}}{4}π$,$\frac{3}{4}π$,$\frac{π}{2}$).
故选:C.

点评 本题考查了球坐标与直角坐标的转化,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体720人中采用分层抽样的办法抽取50人进行了问卷调查,得到了如下列联表:

喜欢户外运动情况
性别
喜欢户外运动不喜欢户外运动合计
男性20
女性15
合计50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)求该公司男、女员工各多少名;
(3)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考;
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式,x2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),且a1,a2,a5成公比不等于1的等比数列.
(Ⅰ)求c的值;
(Ⅱ)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求证:若数列{bn}的前n项和为Sn,则$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i为虚数单位,则(1-2i)(2+i)=4-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(2-a)lnx-2ax-$\frac{1}{x}$,
(1)试讨论f(x)的单调性;
(2)如果当x>1时,f(x)<-2a-1,求实数a的取值范围;
(3)记函数g(x)=f(x)+(a-4)lnx+3ax-$\frac{3a+1}{x}$,若g(x)在区间[1,4]上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x2-3x+2<0},B={x|2<2x<8},则A∩B=(  )
A.{x|1<x<2}B.{x|1<x<3}C.{x|2<x<3}D.{x|-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.由物理中矢量运算及向量坐标表示与运算,我们知道:
(1)两点等分单位圆时有相应关系式为:sinα+sin(π+α)=0,cosα+cos(π+α)=0;
(2)四点等分单位圆时有相应关系式为:sinα+sin(α+$\frac{π}{2}$)+sin(α+π)+sin(α+$\frac{3π}{2}$)=0,cosα+cos(α+$\frac{π}{2}$)+cos(α+π)+cos(α+$\frac{3π}{2}$)=0.
由此我们可以推测,三点等分单位圆时的相应关系式为$sinα+sin(α+\frac{2π}{3})+sin(α+\frac{4π}{3})=0$,$cosα+cos(α+\frac{2π}{3})+cos(α+\frac{4π}{3})=0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{2}{3}$lnx-$\frac{1}{3}$x2+$\frac{1}{2}$,则函数f(x)的最大值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系,设曲线C1的极坐标方程为ρ=2cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}\right.$(t为参数)
(1)判断曲线C1与C2的位置关系;
(2)设M(x,y)为曲线C1上任意一点,求x+y的取值范围.

查看答案和解析>>

同步练习册答案