精英家教网 > 高中数学 > 题目详情
4.从圆C:(x-1)2+(y-1)2=1,外一点P(2,3)向该圆引切线,切点为A,B.
(1)求过点A,B,P三点的圆的方程;
(2)直线AB的方程.

分析 (1)以CP为直径的圆的方程就是过点A,B,P三点的圆的方程;
(2)两圆方程相减可得直线AB的方程.

解答 解:(1)由题意,C(1,1),CP的中点为D(1.5,2),
∴DP=$\sqrt{0.{5}^{2}+{1}^{2}}$=$\frac{\sqrt{5}}{2}$,
∴过点A,B,P三点的圆的方程为(x-1.5)2+(y-2)2=$\frac{5}{4}$;
(2)两圆方程相减可得,直线AB的方程为x+2y-4=0.

点评 本题考查圆的方程,考查直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知椭圆的两个焦点分别为F1、F2,其中F1与抛物线x2=8y的焦点重合,过F1且不与x轴平行的直线与椭圆交于A、B两点,若△ABF2为等腰直角三角形,则e2=(  )
A.7-4$\sqrt{3}$B.5-2$\sqrt{6}$C.9-6$\sqrt{2}$D.8-2$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在?ABCD中,AD=1,∠BAD=60°,E为CD的中点,若$\overrightarrow{AC}$$•\overrightarrow{BE}$=1,则$\overrightarrow{AE}$$•\overrightarrow{AC}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2cos(2x+$\frac{π}{3}$)-2cos2x+1.
(1)试将函数f(x)化为f(x)=Asin(ωx+φ)+B(ω>0)的形式,并求该函数的对称中心;
(2)若锐角△ABC中,A、B、C所对的边分别为a、b、c,且f(A)=0,求$\frac{b}{c}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$.求:
(1)角A的大小;
(2)函数y=cos2B+cos2C的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=sin($\frac{3π}{4}$-x)sin($\frac{3π}{4}$+x)的值域是[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.将下列落在图示部分的角(阴彤部分),用集合表示出来(包括边界).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线y=$\frac{1}{{x}^{3}}$在点P(-1,-1)处的切线与直线m平行且距离等于$\sqrt{10}$,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知tanα=$\frac{1}{3}$,则sin2α+cos2α=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案