分析 因为本题函数f(x)是抽象型的函数,所以要求f(x-1)<0的解集,必须利用函数的单调性,结合已知奇函数的性质得到答案.
解答 解:∵f(x-1)<0,f(2)=0,
∴f(x-1)<f(2),
∵f(x)在(0,+∞)是增函数,
∴0<x-1<2,
∴1<x<3;
∵f(x)是定义在R上的奇函数,f(2)=0,
∴f(x)在(-∞,0)也是增函数,f(-2)=-f(2)=0,
∴f(x-1)<0等价于f(x-1)<f(-2),
∴x-1<-2,
∴x<-1;
综上不等式f(x-1)<0的解集为{x|x<-1或1<x<3}
故答案为:(-∞,-1)∪(1,3).
点评 本题考查了奇函数的定义以及性质的运用;奇函数对称区间的单调性相同;对于抽象型不等式求解集,一般利用函数的单调性解.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | [-1,1] | C. | [1,+∞) | D. | (-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q是真命题 | B. | ¬p∨q是真命题 | C. | ¬q是假命题 | D. | p∧¬q是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{4}{3}$] | B. | [-2,$\frac{4}{3}$] | C. | [0,6] | D. | [-2,6] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com