精英家教网 > 高中数学 > 题目详情
一次单元测试由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确,每题选对得5分,不选或选错不得分,满分得100分.学生甲选对任意一题的概率为0.9,学生乙则在测试中对每题都从各选项中随机地选择一个,分别求学生甲和学生乙在这次测试中成绩的均值.
考点:离散型随机变量的期望与方差,离散型随机变量及其分布列
专题:
分析:设学生甲和学生乙在这次测试中选对的题数分别为X1和X2,由题意知X1~B(20,0.9),X2~B(20,0.25),学生甲和学生乙在这次测试中的成绩分别为5X1和5X2,由此能求出学生甲和学生乙在这次测试中的成绩的均值.
解答: 解:设学生甲和学生乙在这次测试中选对的题数分别为X1和X2
由题意知X1~B(20,0.9),X2~B(20,0.25),
∴EX1=20×0.9=18,EX2=20×0.25=5,
学生甲和学生乙在这次测试中的成绩分别为5X1和5X2
∴学生甲和学生乙在这次测试中的成绩的均值分别为:
E(5X1)=5EX1=5×18=90,
E(5X2)=5EX2=5×5=25.
点评:本题考查离散型随机变量的数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosα=
1
7
,cos(α+β)=-
11
14
,且α、β∈(0,
π
2
),求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),(ω>0,|φ|<π)部分图象如图所示.
(1)求?,ϕ的值;
(2)若方程f(x+
π
3
)=m在区间[{0,
π
2
]内有两个不相等的实数根x1,x2.求:
i)m的取值范围;
ii)求x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:
分组频数
[1.30,1.34)4
[1.34,1.38)25
[1.38,1.42)30
[1.42,1.46)29
[1.46,1.50)10
[1.50,1.54)2
合计100
(1)画出频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的概率;
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的周长为10cm,当它的半径和圆心角各取多少值时,才能使扇形的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1
(1)若f(0)>0,求实数p的取值范围
(2)在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:港口A北偏东30°方向的C处有一观测站,港口正东方向的B处有一轮船,测得BC为31n mile,该轮船从B处沿正西方向航行20n mile后到D处,测得CD为21n mile.
(1)求cos∠BDC和sin∠ACD.
(2)问此时轮船离港口A还有多远?

查看答案和解析>>

科目:高中数学 来源: 题型:

从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,能被3整除的数有
 
 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

当m取何实数时,复数z=(m2-9m-36)+(m2-2m-1.5)i(1)是实数?(2)是虚数?(3)是纯虚数?.

查看答案和解析>>

同步练习册答案