精英家教网 > 高中数学 > 题目详情
15.如图5,已知△BCD中,∠BCD=90°,BC=CD=1,AB=$\sqrt{6}$,AB⊥平面BCD,E、F分别是AC、AD的中点.
(1)求证:平面BEF⊥平面ABC;
(2)设平面BEF∩平面BCD=l,求证CD∥l;
(3)求四棱锥B-CDFE的体积V.

分析 (1)利用线面垂直的判定与性质定理可证:CD⊥平面ABC,再利用三角形的中位线定理可得:EF∥CD.再利用线面垂直的判定、面面垂直的判定即可证明;
(2)由CD∥EF,利用线面平行的判定定理可得:CD∥平面BEF,再利用线面平行的性质定理即可证明;
(3)解法1:由(1)知EF∥CD,利用三角形相似的性质可得:$\frac{{{S_{△AEF}}}}{{{S_{△ACD}}}}=\frac{1}{4}$,得到$\frac{{{V_{B-AEF}}}}{{{V_{B-ACD}}}}=\frac{1}{4}$,求出VB-ACD即可得出.
解法2:取BD中点G,连接FC和FG,则FG∥AB,利用线面垂直的性质可得:FG⊥平面BCD,由(1)知EF⊥平面ABC,利用V=VF-EBC+VF-BCD即可得出;

解答 (1)证明:∵AB⊥平面BCD,CD?平面BCD,
∴AB⊥CD,
又BC⊥CD,AB∩BC=B,
∴CD⊥平面ABC,
又E、F分别是AC、AD的中点,
∴EF∥CD.
∴EF⊥平面ABC
又EF?平面BEF,
∴平面BEF⊥平面ABC.
(2)证明:∵CD∥EF,CD?平面BEF,EF?平面BEF,
∴CD∥平面BEF,
又CD?平面BCD,且平面BEF∩平面BCD=l,
∴CD∥l.
(2)解法1:由(1)知EF∥CD,
∴△AEF~△ACD.
∴$\frac{{{S_{△AEF}}}}{{{S_{△ACD}}}}=\frac{1}{4}$,
∴$\frac{{{V_{B-AEF}}}}{{{V_{B-ACD}}}}=\frac{1}{4}$,
∴$V=\frac{3}{4}{V_{B-ACD}}=\frac{3}{4}{V_{A-BCD}}=\frac{1}{4}{S_{△BCD}}•AB$=$\frac{1}{4}×\frac{1}{2}×1×1×\sqrt{6}=\frac{{\sqrt{6}}}{8}$.
解法2:取BD中点G,连接FC和FG,则FG∥AB,
∵AB⊥平面BCD,∴FG⊥平面BCD,
由(1)知EF⊥平面ABC,
∴V=VF-EBC+VF-BCD=$\frac{1}{3}{S_{△EBC}}•EF+\frac{1}{3}{S_{△BCD}}•FG$=$\frac{1}{3}×\frac{{\sqrt{6}}}{4}×\frac{1}{2}+\frac{1}{3}×\frac{1}{2}×1×1×\frac{{\sqrt{6}}}{2}=\frac{{\sqrt{6}}}{8}$.

点评 本题考查了线面面面垂直与平行的判定与性质定理、三角形的中位线定理、三角形相似的性质三棱锥的体积计算公式,考查了推理能力与计算能力,考查了空间想象能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.袋中有1--4号4个均匀的球,从中取出一个放回再取,设第一次所取球号数与第二次所取球号数商为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以直角坐标系的原点O为极点,x轴的正半轴为极轴,点A的极坐标是(2,0),点C的直角坐标是(0,3),直线l经过点C,且倾斜角是$\frac{π}{4}$,以点A为圆心的圆经过坐标原点O.
(1)求直线l的参数方程和⊙A的极坐标方程;
(2)若点M∈l,点M∈⊙A,求线段MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.试求圆心在点(1,-1)上,并且经过圆上一点A(-3,-4)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC=$\frac{2}{3}$AB,又PO⊥平面ABC,DA∥PO,DA=AO=$\frac{1}{2}$PO.
(Ⅰ)求证:PD⊥平面COD;
(Ⅱ)求二面角B-DC-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.化简$\frac{\sqrt{1-2sin20°cos20°}}{sin20°-\sqrt{1-si{n}^{2}20°}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx,g(x)=ax2-bx(a≠0).
(Ⅰ)当b=0时,求函数h(x)=f(x)-g(x)的单调区间;
(Ⅱ)当b=1时,回答下面两个问题:
(i)若函数y=f(x)与函数y=g(x)的图象在公共点P处有相同的切线.求实数a的值;
(ii)若函数y=f(x)与函数y=g(x)的图象有两个不同的交点M,N.过线段MN的中点作x轴的垂线,分别与f(x),g(x)的图象交于S,T两点.以S为切点作f(x)的切l1,以T为切点作g(x)的切线l2,是否存在实数a,使得l1∥l2,若存在.求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A(1,-4),B(-4,-2),C(-3,0),D(0,0),设AC与BD交于点P,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x函数g(x)=$\frac{2}{x}$-alnx(a∈R),f(x)=x2+g(x)
(Ⅰ)试求函数g(x)的单调区间;
(Ⅱ)若f(x)在区间(0,1)内有极值,试求a的取值范围;
(Ⅲ)a>0时,若f(x)有唯一的零点x0,试求[x0].
(注:[x]为取整函数,表示不超过x的最大整数,如[0.3]=0,[2.6]=2[-1.4]=-2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

查看答案和解析>>

同步练习册答案