精英家教网 > 高中数学 > 题目详情
5.已知关于x函数g(x)=$\frac{2}{x}$-alnx(a∈R),f(x)=x2+g(x)
(Ⅰ)试求函数g(x)的单调区间;
(Ⅱ)若f(x)在区间(0,1)内有极值,试求a的取值范围;
(Ⅲ)a>0时,若f(x)有唯一的零点x0,试求[x0].
(注:[x]为取整函数,表示不超过x的最大整数,如[0.3]=0,[2.6]=2[-1.4]=-2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)

分析 (I)g(x)=$\frac{2}{x}$-alnx(x>0),g′(x)=$-\frac{2}{{x}^{2}}-\frac{a}{x}$=-$\frac{ax+2}{{x}^{2}}$,对a分类讨论:当a≥0时,当a<0时,即可得出单调性;
(II)f(x)=x2+g(x),其定义域为(0,+∞).f′(x)=2x+g′(x)=$\frac{2{x}^{3}-ax-2}{{x}^{2}}$,令h(x)=2x3-ax-2,x∈[0,+∞),h′(x)=6x2-a,当a<0时,可得:函数h(x)在(0,1)内至少存在一个变号零点x0,且x0也是f′(x)的变号零点,此时f(x)在区间(0,1)内有极值.当a≥0时,由于函数f(x)单调,因此函数f(x)无极值.
(III)a>0时,由(II)可知:f(1)=3知x∈(0,1)时,f(x)>0,因此x0>1.又f′(x)在区间(1,+∞)上只有一个极小值点记为x1,由题意可知:x1即为x0.得到$\left\{\begin{array}{l}{f({x}_{0})=0}\\{{f}^{′}({x}_{0})=0}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}_{0}^{2}+\frac{2}{{x}_{0}}-aln{x}_{0}=0}\\{2{x}_{0}^{3}-a{x}_{0}-2=0}\end{array}\right.$,消去a可得:$2ln{x}_{0}=1+\frac{3}{{x}_{0}^{3}-1}$,a>0,令t1(x)=2lnx(x>1),${t}_{2}(x)=1+\frac{3}{{x}^{3}-1}(x>0)$,分别研究单调性即可得出x0的取值范围.

解答 解:(I)g(x)=$\frac{2}{x}$-alnx(x>0),g′(x)=$-\frac{2}{{x}^{2}}-\frac{a}{x}$=-$\frac{ax+2}{{x}^{2}}$,
(i)当a≥0时,g′(x)<0,∴(0,+∞)为函数g(x)的单调递减区间;
(ii)当a<0时,由g′(x)=0,解得x=-$\frac{2}{a}$.
当x∈$(0,-\frac{2}{a})$时,g′(x)<0,此时函数g(x)单调递减;当x∈$(-\frac{2}{a},+∞)$时,g′(x)>0,此时函数g(x)单调递增.
(II)f(x)=x2+g(x),其定义域为(0,+∞).
f′(x)=2x+g′(x)=$\frac{2{x}^{3}-ax-2}{{x}^{2}}$,
令h(x)=2x3-ax-2,x∈[0,+∞),h′(x)=6x2-a,
当a<0时,h′(x)≥0恒成立,∴h(x)为(0,+∞)上的增函数,
又h(0)=-2<0,h(1)=-a>0,
∴函数h(x)在(0,1)内至少存在一个变号零点x0,且x0也是f′(x)的变号零点,此时f(x)在区间(0,1)内有极值.
当a≥0时,h(x)=2(x3-1)-ax<0,即x∈(0,1)时,f′(x)<0恒成立,函数f(x)无极值.
综上可得:f(x)在区间(0,1)内有极值的a的取值范围是(-∞,0).
(III)∵a>0时,由(II)可知:f(1)=3知x∈(0,1)时,f(x)>0,
∴x0>1.
又f′(x)在区间(1,+∞)上只有一个极小值点记为x1
且x∈(1,x1)时,函数f(x)单调递减,x∈(x1,+∞)时,函数f(x)单调递增,
由题意可知:x1即为x0
∴$\left\{\begin{array}{l}{f({x}_{0})=0}\\{{f}^{′}({x}_{0})=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{x}_{0}^{2}+\frac{2}{{x}_{0}}-aln{x}_{0}=0}\\{2{x}_{0}^{3}-a{x}_{0}-2=0}\end{array}\right.$,消去a可得:$2ln{x}_{0}=1+\frac{3}{{x}_{0}^{3}-1}$,
a>0,令t1(x)=2lnx(x>1),${t}_{2}(x)=1+\frac{3}{{x}^{3}-1}(x>0)$,
则在区间(1,+∞)上t1(x)单调递增,t2(x)单调递减.
t1(2)=2ln2<2×0.7=$\frac{7}{5}$$<\frac{10}{7}$=t2(2),
t1(3)=2ln3>2>$1+\frac{3}{26}$=t2(3).
∴2<x0<3,
∴[x0]=2.

点评 本题考查了利用当时研究函数的单调性极值与最值,考查了分类讨论方法,考查了分析问题与解决问题的方法,考查了零点存在但是求不出准确值的情况下的解决方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图5,已知△BCD中,∠BCD=90°,BC=CD=1,AB=$\sqrt{6}$,AB⊥平面BCD,E、F分别是AC、AD的中点.
(1)求证:平面BEF⊥平面ABC;
(2)设平面BEF∩平面BCD=l,求证CD∥l;
(3)求四棱锥B-CDFE的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知当x=5时,二次函数f(x)=ax2+bx取得最小值,等差数列{an}的前n项和Sn=f(n),a2=-7.
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为T,且bn=$\frac{{a}_{n}}{{2}^{n}}$,求T.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在数列{an}中,前n项和Sn=(n2+n)•3n
(1)求an,如果an<Sn•t对任意的x∈N+成立,求t的取值范围;
(2)证明:$\frac{{a}_{1}}{{1}^{2}}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{2}^{n}}$>3n对于任意x∈N+成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某教研机构准备举行一次数学新课程研讨会,共邀请 了n位一线教师(n>8且n∈N*),其中有6位教师使用人教A版教材,其余使用北师大版教材.
(Ⅰ)从这N位一线教师中随机选出2位,若他们使用不同版本教材的概率不小于$\frac{1}{2}$,求N的最大值;
(Ⅱ)当N=12时,设选出的2位教师中使用人教A版教材的人数为ζ,求ξ的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系中,若P(x,y)满足$\left\{\begin{array}{l}{x-4y+4≤0}\\{2x+y-10≤0}\\{5x-2y+2≥0}\end{array}\right.$,则当xy取得最大值时,点P的坐标为(  )
A.(4,2)B.(2,2)C.(2,6)D.($\frac{5}{2}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,正方形 ADEF 与梯形 ABCD所在平面互相垂直,已知 AB∥CD,AD⊥CD,AB=AD=$\frac{1}{2}$CD.
(1)求证:BF∥平面CDE;
(2)求平面BDF 与平面CDE 所成锐二面角的余弦值;
(3)线段EC 上是否存在点M,使得平面BDM⊥平面BDF?若存在,求出$\frac{EM}{EC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.比较下列各组数的大小:
(1)cos$\frac{4π}{7}$和cos$\frac{5π}{7}$;
(2)sin$\frac{π}{7}$和tan$\frac{π}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i是虚数单位,若($\frac{2+i}{1+mi}$)2<0(m∈R),则m的值为-2.

查看答案和解析>>

同步练习册答案