精英家教网 > 高中数学 > 题目详情
若不等式|x-5|+|x+3|<t的解集不为空集,则实数t的取值范围为
 
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:利用绝对值三角不等式求得|x-5|+|x+3|的最小值,可得实数t的取值范围.
解答: 解:∵不等式|x-5|+|x+3|<t的解集不为空集,|x-5|+|x+3|≥|(x-5)-(x+3)|=8,∴t>8,
故答案为:(8,+∞).
点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的能成立问题,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,PA⊥平面ABC,△ABC中BC⊥AC,
(1)求证:BC⊥平面PAC;
(2)求证:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},且A∪B={2,3,5},A∩B={3},求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f﹙x﹚=
2x
1+|x|
﹙x∈R﹚,区间M=[a,b](a<b),集合N={y|y=f﹙x﹚,x∈M},则使M=N成立的实数对(a,b)有
 
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“⊕”,“?”是两个运算符号,且满足如下运算法则:对任意a,b∈R,有a⊕b=ab,a?b=
a-b
(a+b)2+1
,设全集U={c|c=(a⊕b)+(a?b),-2<a≤b<1且a,b∈Z},A={d|d=2(a⊕b)+a?b,-1<a<b<2且a,b∈Z},则∁UA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c分别是△ABC的A,B,C所对的三边,且csinC=3asinA+3bsinB,则圆M:x2+y2=12被直线l:ax-by+c=0所截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=4,|
b
|=3,且(2
a
-3
b
)•(2
a
+
b
)=61,则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={m|m=6n,n∈N*,且m<60}中所有元素的和等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域D1={(x,y)||x|<2,|y|<2},D2={(x,y)|kx-y+2<0},在D1内随机取一点M,若点M恰好取自区域D2的概率为p,且0<p≤
1
8
,则k的取值范围是(  )
A、[-1,1]
B、[-1,0]∪(0,1]
C、[-1,
1
2
]∪[
1
2
,1]
D、[-
1
2
,0]∪(0,
1
2
]

查看答案和解析>>

同步练习册答案