精英家教网 > 高中数学 > 题目详情
8.曲线y=lnx-2x在点(1,-2)处的切线与坐标轴所围成的三角形的面积是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.2

分析 根据求导公式求出函数的导数,把x=1代入求出切线的斜率,代入点斜式方程并化简,分别令x=0和y=0求出切线与坐标轴的交点坐标,再代入面积公式求解.

解答 解:由题意得y′=$\frac{1}{x}$-2,则在点M(1,-2)处的切线斜率k=-1,
故切线方程为:y+2=-(x-1),即y=-x-1,
令x=0得,y=-1;令y=0得,x=-1,
∴切线与坐标轴围成三角形的面积S=$\frac{1}{2}×1×1$=$\frac{1}{2}$,
故选A.

点评 试题主要考查导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x)满足:f(x)•f(x+2)=13,f(1)=2,则f(2015)=$\frac{13}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设△ABC的三边长分别为a,b,c,面积为S,内切圆半径为r,则S=$\frac{1}{2}$(a+b+c)r,类比这个结论知:四面体S-ABC的四个面的面分别为S1,S2,S3,S4,体积为V,内切球半径为R,则V=$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线C:x2=2y的焦点为F,P为抛物线C上的任意一点,点M(-2,3),则|MP|+|PF|的最小值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.a2>b2是a>b的必要条件
B.“若a∈(0,1),则关于x的不等式ax2+2ax+1>0解集为R”的逆命题为真
C.“若a,b不都是偶数,则a+b不是偶数”的否命题为假
D.“已知a,b∈R,若a+b≠3,则a≠2或b≠1”的逆否命题为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.集合$A=\left\{{x\left|{x=\frac{k}{4}+\frac{1}{2},k∈Z}\right.}\right\}$,与集合$B=\left\{{x\left|{x=\frac{k}{2}+\frac{1}{4},k∈Z}\right.}\right\}$的关系是B?A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,右准线为l,若椭圆上存在点M,满足它到点F的距离是其到l的距离的$\frac{3}{2}$倍,则椭圆的离心率的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y=\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$的最小值是$\frac{5}{2}$.设x、y∈R+且$\frac{1}{x}$+$\frac{9}{y}$=1,则x+y的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{bn}满足:b${\;}_{1}=\frac{1}{2}$,bn+1=1-$\frac{1}{{b}_{n}}$.
(1)求b2,b3,b4
(2)证明:bn+3=bn
(3)设数列{bn}的前n项和为Sn,求S2012的值.

查看答案和解析>>

同步练习册答案