精英家教网 > 高中数学 > 题目详情
利用诱导公式求下列三角形数值:
(1)sin(-810°);
(2)cos
11π
2

(3)sin120°;
(4)cos(-
3
);
(5)tan150°;
(6)sin
25π
6

(7)cos300°;
(8)sin(-
13π
4
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:原式各项中的角度变形,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果.
解答: 解:(1)原式=-sin(720°+90°)=-sin90°=-1;
(2)原式=cos(6π-
π
2
)=cos(-
π
2
)=cos
π
2
=0;
(3)原式=sin(180°-60°)=sin60°=
3
2

(4)原式=cos
3
=cos(π+
π
3
)=-cos
π
3
=-
1
2

(5)原式=tan(180°-30°)=-tan30°=-
3
3

(6)原式=sin(4π+
π
6
)=sin
π
6
=
1
2

(7)原式=cos(360°-60°)=cos(-60°)=cos60°=
1
2

(8)原式=-sin
13π
4
=-sin(3π+
π
4
)=sin
π
4
=
2
2
点评:此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设计一个算法,求f(x)=x6+x5+x4+x3+x2+x+1,当x=2时的函数值,要求画出程序框图,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,设cn=an+bn,则c10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等比数列{an}中,a1=2,S3=26,求q与a3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b>0,a≠b,lna-lnb=a-b,给出下列结论,
①0<ab<1,②O<a+b<2,③a+b-ab>1.
其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,0),
b
=(1,4)
(1)求2
a
+3
b
a
-2
b

(2)若向量k
a
+
b
a
+2
b
平行,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(-x2+b)在点P(0,f(0))处的切线方程为y=3x+3.
(Ⅰ) 求函数f(x)的单调递减区间;
(Ⅱ)当x∈(-1,+∞)时,f(x)+x2ex+2xex≥m(x+1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-m)lnx+
m
2
x2-nx(m≠0)在点(1,f(1))处的切线与x轴平行.
(1)求n的值;
(2)若存在x0∈[1,+∞),使得f(x0)<1-
1
m
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
(x+a)lnx
x+1
,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,求a的值.

查看答案和解析>>

同步练习册答案