| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{2}$ |
分析 把函数看作是动点M(x,ex)与动点N(a,a)之间距离的平方,利用导数求出曲线y=ex上与直线y=x平行的切线的切点,得到曲线上点到直线距离的最小值,结合题意可得只有切点到直线距离的平方等于$\frac{1}{2}$,然后由两直线斜率的关系列式求得实数a的值.
解答 解:函数f(x)可以看作是动点M(x,ex)与动点N(a,a)之间距离的平方,
动点M在函数y=ex的图象上,N在直线y=x的图象上,
问题转化为求直线上的动点到曲线的最小距离,
由y=ex得,y′=ex=1,解得x=0,
∴曲线上点M(0,1)到直线y=x的距离最小,最小距离d=$\frac{1}{\sqrt{2}}$,
则f(x)≥$\frac{1}{2}$,
根据题意,要使f(x0)≤$\frac{1}{2}$,则f(x0)=$\frac{1}{2}$,此时N恰好为垂足,
由kMN=$\frac{a-1}{a}$=-1,解得a=$\frac{1}{2}$.
故选:D.
点评 本题考查利用导数求曲线上过某点切线的斜率,考查了数形结合和数学转化思想方法,训练了点到直线的距离公式的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{144}$=1(x>0) | B. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{144}$=1(x<0) | ||
| C. | $\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{144}$=1(y>0) | D. | $\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{144}$=1(y<0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | 频数 | 频率 |
| [0,30) | 3 | 0.03 |
| [30,60) | 3 | 0.03 |
| [60,90) | 37 | 0.37 |
| [90,120) | m | n |
| [120,150) | 15 | 0.15 |
| 合计 | M | N |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com