精英家教网 > 高中数学 > 题目详情
14.为了解我市高二年级进行的一次考试中数学成绩的分布状况,有关部门随机抽取了一个样本,对数学成绩进行分组统计分析如下表:
(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图:
分组频数频率
[0,30) 3 0.03
[30,60) 3 0.03
[60,90) 37 0.37
[90,120) m n
[120,150) 15 0.15
合计MN
(2)若我市参加本次考试的学生有18000人,试估计这次测试中我市学生成绩在90分以上的人数;
(3)为了深入分析学生的成绩,有关部门拟从分数不超过60的学生中选取2人进行进一步分析,求被选中2人分数均不超过30分的概率.

分析 (I)由频率分布表利用频率=$\frac{频数}{总数}$,能求出M,m,n,前能出频率分布直方图示.
(Ⅱ)先求出全区90分以上学生的频率,由此能估计这次测试中我市学生成绩在90分以上的人数.
(Ⅲ)利用列举法能求出被选中2人分数均不超过30分的概率.

解答 解:(I)由频率分布表得M=$\frac{3}{0.03}$=100,
∴m=100-(3+3+37+15)=42,
n=$\frac{42}{100}$=0.42,N=0.03+0.03+0.37+0.42+0.15=1,
频率分布表如右图所示.
(Ⅱ)由题意知,全区90分以上学生估计为$\frac{42+15}{100}×18000=10260$(人).
(Ⅲ)设考试成绩在(0,30]内的3 人分别为A、B、C,考试成绩在(30,60]内的3人分别为a,b,c,
从不超过60分的6人中,任意取2人的结果有15个:
(A,B),(A,C),(A,a),(A,b),(A,c),(B,C),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),(a,b),(a,c),(b,c),
被选中2人分数均不超过30分的情况有:(A,B),(A,C),(B,C),共3个,
∴被选中2人分数均不超过30分的概率p=$\frac{3}{15}=\frac{1}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=(x-a)2+(ex-a)2(a∈R),若存在x0∈R,使得f(x0)≤$\frac{1}{2}$成立,则实数a的值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)={log_9}({9^x}+1)+kx(k∈R)$是偶函数.
(1)求k的值;
(2)若函数y=f(x)的图象与直线$y=\frac{1}{2}x+b$没有交点,求b的取值范围.
(3)设$h(x)={log_9}(a•{3^x}-\frac{4}{3}a)$,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某中学的高二年级有男同学45名,女同学30名,老师按照分层抽样的方法组建了一个5人的课外兴趣小组;
(Ⅰ)求课外兴趣小组中男、女同学的人数
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定随机选出两名同学分别去做某项试验,求选出的两名同学中恰有一名女同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果f(x)在[-5,5]上是奇函数,且f(3)<f(1),则(  )
A.f(-1)<f(-3)B.f(0)>f(1)C.f(-1)<f(1)D.f(-3)<f(-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx+2sinα(α∈(0,$\frac{π}{2}$))的导函数f′(x),若存在x0<1使得f′(x0)=f(x0)成立,则实数α的取值范围为(  )
A.($\frac{π}{3}$,$\frac{π}{2}$)B.(0,$\frac{π}{3}$)C.($\frac{π}{6}$,$\frac{π}{2}$)D.(0,$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.化简:$\overrightarrow{AB}$+$\overrightarrow{OA}$-$\overrightarrow{OB}$=(  )
A.$\overrightarrow{0}$B.$\overrightarrow{BA}$C.2$\overrightarrow{AB}$D.-2$\overrightarrow{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知圆的-条直径的两端点是(2,0),(2,-2).则此圆方程是(x-2)2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.编写一个程序,求1~1000之间的所有3的倍数之和和所有7的倍数之和及所有3或7的倍数之和.

查看答案和解析>>

同步练习册答案