精英家教网 > 高中数学 > 题目详情
3.已知圆的-条直径的两端点是(2,0),(2,-2).则此圆方程是(x-2)2+(y+1)2=1.

分析 根据条件求出圆心和半径即可得到结论.

解答 解:∵圆的-条直径的两端点是(2,0),(2,-2).
∴圆心坐标为($\frac{2+2}{2}$,$\frac{0-2}{2}$),即(2,-1),
则半径r=1,
则圆的方程为(x-2)2+(y+1)2=1,
故答案为:(x-2)2+(y+1)2=1

点评 本题主要考查圆的方程的求解,根据中点坐标公式求出圆心坐标以及半径是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某家具厂生产一种课桌,每张课桌的成本为50元,出厂单价定为80元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部课桌出厂单价降低0.02元.根据市场调查,销售商一次订购量不会超过1000张.
(Ⅰ)设一次订购量为x张,课桌的实际出厂单价为P元,求P关于x的函数关系式P(x);
(Ⅱ)当一次订购量x为多少时,该家具厂这次销售课桌所获得的利润f(x)最大?其最大利润是多少元?(家具厂售出一张课桌的利润=实际出厂单价-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了解我市高二年级进行的一次考试中数学成绩的分布状况,有关部门随机抽取了一个样本,对数学成绩进行分组统计分析如下表:
(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图:
分组频数频率
[0,30) 3 0.03
[30,60) 3 0.03
[60,90) 37 0.37
[90,120) m n
[120,150) 15 0.15
合计MN
(2)若我市参加本次考试的学生有18000人,试估计这次测试中我市学生成绩在90分以上的人数;
(3)为了深入分析学生的成绩,有关部门拟从分数不超过60的学生中选取2人进行进一步分析,求被选中2人分数均不超过30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα=$\frac{\sqrt{5}}{5}$,且α是第一象限.
(1)求tan(π+α)+$\frac{sin(\frac{π}{2}-α)}{cos(π-α)}$的值;
(2)求tan(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,2),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=cos2(x-$\frac{π}{4}$)-cos2(x+$\frac{π}{4}$)的最大值和最小正周期分别为(  )
A.$\frac{1}{2}$,πB.1,πC.$\frac{1}{2}$,$\frac{π}{2}$D.1,$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=lg(mx+$\sqrt{{x}^{2}+1}$)为奇函数,则m=(  )
A.-1B.1C.-1或1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果一个点既在对数函数的图象上又在指数函数的图象上,那么称这个点为“幸运点”,在下列的五个点M(1,1),N(1,2),P(2,1),Q(2,2),G(2,$\frac{1}{2}$)中,“幸运点”有多少个(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果第xh时,原油的温度(单位℃)为y=f(x)=x2-7x+15(0≤x≤8),则第4h时原油温度的瞬时变化率是1℃/h;在第4h时附近,原油的温度在上升.(此空填上升或下降)

查看答案和解析>>

同步练习册答案