精英家教网 > 高中数学 > 题目详情
16.若f(x)=xcosx,则函数f(x)的导函数f'(x)等于(  )
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

分析 根据导数的运算法则计算即可.

解答 解:f(x)=xcosx,则函数f(x)的导函数f'(x)=cosx-xsinx,
故选:D

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.计算(字母为正数)
(1)(4a2b${\;}^{\frac{2}{3}}$)(-2a${\;}^{\frac{1}{3}}$b${\;}^{-\frac{2}{3}}$)÷(-b${\;}^{-\frac{1}{2}}$);
(2)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$-($\sqrt{2}$-1)0+(-1)2016+2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,三角形VAB为等边三角形,AC⊥BC且     AC=BC=$\sqrt{2}$,O、M分别为AB和VA的中点.
(1)求证:VB∥平面MOC;
(2)求直线MC与平面VAB所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=3$\sqrt{t}$,Q=t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:
(1)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(2)怎样将资金分配给甲、乙两种商品,能使得总利润y达到最大值,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,则cosα=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左顶点为A,右焦点为F,上顶点为B,下顶点为C,若直线AB与直线CF的交点为(3a,16),则椭圆的标准方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=cos(ωx+φ)的部分图象如图,则f(-$\frac{π}{6}$)+f(-$\frac{π}{12}$)+f(0)=(  )
A.$\frac{1-\sqrt{2}}{2}$B.$\frac{1+\sqrt{2}}{2}$C.$\frac{1-\sqrt{3}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等腰梯形ABCD中,已知AB∥DC,∠ABC=60°,BC=$\frac{1}{2}$AB=2,动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{2λ}$$\overrightarrow{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的最小值为4$\sqrt{6}$-13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C与双曲线$\frac{{x}^{2}}{3}$-y2=1有公共焦点,且过点(2,$\sqrt{2}$).求双曲线C的方程.

查看答案和解析>>

同步练习册答案