精英家教网 > 高中数学 > 题目详情
6.计算(字母为正数)
(1)(4a2b${\;}^{\frac{2}{3}}$)(-2a${\;}^{\frac{1}{3}}$b${\;}^{-\frac{2}{3}}$)÷(-b${\;}^{-\frac{1}{2}}$);
(2)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$-($\sqrt{2}$-1)0+(-1)2016+2-1

分析 (1)利用有理数指数幂的性质、运算法则求解.
(2)利用有理数指数幂的性质、运算法则求解.

解答 解:(1)(4a2b${\;}^{\frac{2}{3}}$)(-2a${\;}^{\frac{1}{3}}$b${\;}^{-\frac{2}{3}}$)÷(-b${\;}^{-\frac{1}{2}}$)
=$[4×(-2)÷(-1)]{a^{2+\frac{1}{3}}}{b^{\frac{2}{3}-\frac{2}{3}+\frac{1}{2}}}$
=$8{a^{\frac{7}{3}}}{b^{\frac{1}{2}}}$.
(2)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$-($\sqrt{2}$-1)0+(-1)2016+2-1
=$\sqrt{\frac{25}{4}}-\root{3}{{\frac{27}{8}}}-1+1+\frac{1}{2}$
=$\frac{5}{2}-\frac{3}{2}+\frac{1}{2}$=$\frac{3}{2}$.

点评 本题考查有理数指数式化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.利用行列式解关于x,y的二元一次方程组$\left\{\begin{array}{l}{mx+y=-1}\\{3mx-my=2m+3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义域为R的函数f(x)=$\frac{{2}^{x}+b}{{2}^{x}+1}$是奇函数.
(1)求函数f(x)的解析式,并说明函数的单调性;
(2)解不等式f(2x+1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(cosx)=-f′($\frac{1}{2}$)cosx+$\sqrt{3}$sin2x,则f($\frac{1}{2}$)的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x<0}\\{x+1,x≥0}\end{array}\right.$,则f[f(-1)]=(  )
A.0B.3C.4D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=ln(x-3)的定义域是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥S-ABCD中,底面ABCD为平行四边形,AB=3,AC=4,AD=5,SA⊥平面ABCD.
(1)证明:AC⊥平面SAB;
(2)若SA=2,求三棱锥A-SCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率是$\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若f(x)=xcosx,则函数f(x)的导函数f'(x)等于(  )
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

查看答案和解析>>

同步练习册答案