分析 (1)推导出AC⊥AB,SA⊥AC,由此能证明AC⊥平面SAB.
(2)由VA-SCD=VS-ACD,能求出三棱锥A-SCD的体积.
解答 证明:(1)∵四棱锥S-ABCD中,底面ABCD为平行四边形,![]()
AB=3,AC=4,AD=5,
∴BC2=AB2+AC2,AC⊥AB,
∵SA⊥平面ABCD,∴SA⊥AC,
∵AB∩SA=A,∴AC⊥平面SAB.
解:(2)VA-SCD=VS-ACD=$\frac{1}{3}{S}_{△ACD}×SA$,
∵SA⊥平面ABCD,
∴SA是三棱锥S-ACD的高,
S△ACD=$\frac{1}{2}×AC×CD$=$\frac{1}{2}×4×3$=6,
∴VA-SCD=VS-ACD
=$\frac{1}{3}×{S}_{△ACD}×SA$=$\frac{1}{3}×6×2=4$.
点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{3}{2},4}]$ | B. | $[{\frac{3}{2},+∞})$ | C. | (1,4] | D. | $[{\frac{5}{4},\frac{5}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | [2,+∞) | C. | (-∞,2) | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,4) | B. | (-∞,3)∪(4,+∞) | C. | (4,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1-\sqrt{2}}{2}$ | B. | $\frac{1+\sqrt{2}}{2}$ | C. | $\frac{1-\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com