精英家教网 > 高中数学 > 题目详情
18.在△ABC中,已知sinA=13sinBsinC,cosA=13cosBcosC,则tanA+tanB+tanC的值为196.

分析 已知两式相除,利用同角三角函数间基本关系化简得到tanA=tanBtanC,化简cosA=13cosBcosC,求出tanBtanC的值,利用两角和与差的正切函数公式变形即可求出所求式子的值.

解答 解:∵cosA,cosB,cosC均不为0,由sinA=13sinBsinC①,cosA=13cosBcosC②,
$\frac{①}{②}$得:tanA=tanBtanC,
∵cosA=13cosBcosC,且cosA=-cos(B+C)=sinAsinB-cosAcosB,
∴sinAsinB=14cosAcosB,
∴tanBtanC=14,
∵tanB+tanC=tan(B+C)(1-tanBtanC)=-tanA(1-tanBtanC)=-tanA+tanAtanBtanC,
∴tanA+tanB+tanC=tanAtanBtanC=196.
故答案为:196.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{2}}{2}$,点(1,$\frac{\sqrt{2}}{2}$)在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F1的直线与椭圆相较于P、Q两点,设△PQF2内切圆的面积为S,求S最大时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b
5
(1)求数列{an}的通项公式;
(2)数列{bn}的前n项和为Tn,求证:$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mlnx-$\frac{1}{2}$x2(m∈R)满足f'(1)=1.
(1)求m的值及函数f(x)的单调区间;
(2)若函数g(x)=f(x)-($\frac{1}{2}$x2-3x+c)在[1,3]内有两个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ 3x-y-3≤0\end{array}\right.$,则当2x-y取得最小值时,x2+y2的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=(x-a)lnx-x+a,a∈R.
(1)若a=0,求函数f(x)的单调区间;
(2)若a<0,试判断函数f(x)在区间(e-2,e2)内的极值点的个数,并说明理由;
(3)求证:对任意的正数a,都存在实数t,满足:对任意的x∈(t,t+a),f(x)<a-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知平面α与平面β相交于直线n,且不垂直,直线m?β,且m与n相交,点A∉α,l为过点A的一条动直线,那么下列情形可能出现的是(  )
A.l∥m且l⊥αB.l⊥m且l⊥αC.l⊥m且l∥αD.l∥m且l∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.($\sqrt{x}$+1)4($\sqrt{x}$-1)8的展开式中x2的系数是-17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在数列{an}中,已知an≥2,a1=2,an+1+an-2=$\frac{1}{{a}_{n+1}-{a}_{n}}$,n∈N*
(1)求a2的值及数列{an}的通项公式;
(2)设k∈N,k≤$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{100}-1}$<k+1,求k的值.

查看答案和解析>>

同步练习册答案