精英家教网 > 高中数学 > 题目详情
4.已知f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx-x+1,则函数g(x)=f(x)-ex(e为自然对数的底数)的零点个数是(  )
A.0B.1C.2D.3

分析 确定x=1时函数有极大值为f(1)=0,根据奇函数的对称性,作出其函数图象,根据图象,可得结论.

解答 解:因为当x>0时,函数f(x)=lnx-x+1有$f'(x)=\frac{1}{x}-1=\frac{1-x}{x}$,
所以函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
当x=1时函数有极大值为f(1)=0,
根据奇函数的对称性,作出其函数图象如图所示:
由函数图象可知y=ex和y=f(x)有两个不同交点,
故选C.

点评 本题考查函数的零点,考查函数的单调性,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知9a=3,lnx=a,则x=$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示的程序框图,输出的S=88

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x-lnx+h在区间$[{\frac{1}{e},{e^2}}]$上任取三个实数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则实数h的取值范围是(  )
A.(-∞,e2B.(-∞,e2-4)C.(e2,+∞)D.(e2-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若双曲线C:x2-$\frac{y^2}{b^2}$=1(b>0)的离心率为2,则b=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n项和为Sn,且a1=1,S3+S4=S5
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}={(-1)^{n-1}}{a_n}$,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y∈(0,+∞),且满足$\frac{1}{x}+\frac{1}{2y}=2$,那么x+4y的最小值为(  )
A.$\frac{3}{2}-\sqrt{2}$B.$3+\frac{{\sqrt{2}}}{2}$C.$\frac{3}{2}+\sqrt{2}$D.$3-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于每个实数x,设f(x)取$y=2\sqrt{x}$,y=|x-2|两个函数中的较小值.若动直线y=m与函数y=f(x)的图象有三个不同的交点,它们的横坐标分别为x1、x2、x3,则x1+x2+x3的取值范围是(  )
A.(2,$6-2\sqrt{3}$)B.(2,$\sqrt{3}+1$)C.(4,$8-2\sqrt{3}$)D.(0,$4-2\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,则z=2x-y的最大值为(  )
A.5B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案