精英家教网 > 高中数学 > 题目详情
4.以下茎叶图记录了某赛季甲、乙两名篮球运动员参加11场比赛的得分(单位:分)若甲运动员的中位数为a,乙运动员的众数为b,则a-b的值是8.

分析 根据茎叶图,结合中位数和众数的定义进行求解即可.

解答 解:甲运动员的中位数为19,即a=19,
乙运动员的众数为b=11,
则a-b=19-11=8,
故答案为:8;

点评 本题考查中位数,对于一组数据,通常要求的是这组数据的众数,中位数,平均数分别表示一组数据的特征,这样的问题可以出现在选择题或填空题,考查最基本的知识点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.春运期间旅客增多,铁路局拟在深圳开往郑州的10辆列车基础上增加2辆临时列车,则不同的添加方法共有132种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2-x≤0},B={x|f(x)=lg(1-|x|)},则A∩B=[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,一个圆形靶子的中心是一个“心形”图案,其中“心形”图案是由上边界C1(虚线L上方部分)与下边界C2(虚线L下方部分)围成,曲线C1是函数y=$\sqrt{1-{x}^{2}}$+x${\;}^{\frac{4}{5}}$ 的图象,曲线C2是函数y=-$\sqrt{1-{x}^{2}}$+x${\;}^{\frac{2}{7}}$ 的图象,圆的方程为x2+y2=8,某人向靶子射出一箭(假设此人此箭一定能射中靶子且射中靶中任何一点是等可能的),则此箭恰好命中“心形”图案的概率为(  )
A.$\frac{1}{4}$-$\frac{1}{18π}$B.$\frac{1}{16}$-$\frac{1}{18π}$C.$\frac{1}{8}$+$\frac{1}{18π}$D.$\frac{1}{8}$+$\frac{36}{35π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知F1、F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A1、A2分别为其左、右顶点,过F2且与x轴垂直的直线l与椭圆相交于M、N两点.若四边形A1MA2N的面积等于2,且满足|$\overrightarrow{{A}_{1}{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{MN}$|+|$\overrightarrow{{A}_{2}{F}_{2}}$|.
(1)求此椭圆的方程;
(2)设⊙O的直径为F1F2,直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点P、Q,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=λ,且λ∈[$\frac{2}{3}$,$\frac{3}{4}$],求△POQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z=$\frac{2-2i}{1+i}$,则z的共轭复数的虚部等于(  )
A.2iB.-2iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,结果是(  )
A.$\frac{65}{81}$B.$\frac{19}{27}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,若角α的始边为x轴的非负半轴,终边为射线l:y=2$\sqrt{2}$x(x≥0).
(1)求sin(2α+$\frac{π}{6}$)的值;
(2)若点P,Q分别是角α始边、终边上的动点,且PQ=4,求△POQ面积最大时,点P,Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$.
(1)求该高中获得冠军个数X的分布列;
(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.

查看答案和解析>>

同步练习册答案