精英家教网 > 高中数学 > 题目详情
16.执行如图所示的程序框图,结果是(  )
A.$\frac{65}{81}$B.$\frac{19}{27}$C.$\frac{5}{9}$D.$\frac{1}{3}$

分析 模拟执行程序框图,依次写出每次循环得到的i,a,S的值,当i=4时满足条件i>3,退出循环,输出S的值为$\frac{65}{81}$.

解答 解:模拟执行程序框图,可得
S=0,i=0
i=1
a=$\frac{1}{3}$,S=$\frac{1}{3}$,
不满足条件i>3,i=2,a=$\frac{2}{9}$,S=$\frac{5}{9}$
不满足条件i>3,i=3,a=$\frac{4}{27}$,S=$\frac{19}{27}$
不满足条件i>3,i=4,a=$\frac{8}{81}$,S=$\frac{65}{81}$
满足条件i>3,退出循环,输出S的值为$\frac{65}{81}$.
故选:A.

点评 本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i,a,S的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数y=sin(x+φ)(|φ|<$\frac{π}{2}$)的图象与x轴的一个交点是(-$\frac{8π}{3}$,0),试求这个函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,甲船从A处以每小时30海里的速度沿正北方向航行,乙船在B处沿固定方向匀速航行,B在A北偏西105°方向用与B相距10$\sqrt{2}$ 海里处.当甲船航行20分钟到达C处时,乙船航行到甲船的北偏西120°方向的D处,此时两船相距10海里.
(1)求乙船每小时航行多少海里?
(2)在C的北偏西30°方向且与C相距$\frac{8\sqrt{3}}{3}$海里处有一个暗礁E,周围$\sqrt{2}$海里范围内为航行危险区域.问:甲、乙两船按原航向和速度航行有无危险?若有危险,则从有危险开始,经过多少小时后能脱离危险?若无危险,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.以下茎叶图记录了某赛季甲、乙两名篮球运动员参加11场比赛的得分(单位:分)若甲运动员的中位数为a,乙运动员的众数为b,则a-b的值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若定义在R上的函数满足f(-x)=f(x),f(4-x)=f(x),且当x∈[0,2]时,f(x)=$\sqrt{4-{x^2}}$,则函数H(x)=|xex|-f(x)在区间[-6,2]上的零点个数为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点$(2,\frac{π}{3})$且垂直于极轴的直线的极坐标方程为ρcosθ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若过点(2,0)的直线l与圆C:x2+y2=1有公共点,则直线l的斜率k的取值范围是(  )
A.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]B.(-∞,-$\frac{\sqrt{3}}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将一批工件的尺寸在(40~100mm之间)分成六段,即[40,50),[50,60),…,[90,100),得到如图的频率分布直方图,则图中实数a的值为0.03.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,茎叶图记录了某校甲班3名同学在一学年中去社会实践基地A实践的次数和乙班4名同学在同一学年中去社会实践基地B实践的次数.乙班记录中有一个数据模糊,无法确认,在图中用x表示.
(Ⅰ)如果x=7,求乙班4名同学实践基地B实践次数的中位数和方差;
(Ⅱ)如果x=9,从实践次数大于8的同学中任选两名同学,求选出的两名同学分别在甲、乙两个班级且实践次数的和大于20的概率.

查看答案和解析>>

同步练习册答案