精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=10n-n2,数列{bn}的每一项都有bn=|an|,求数列{bn}的前10项和.
考点:数列的求和,等差数列的前n项和
专题:等差数列与等比数列
分析:根据题意可得{bn}是由一个首项为正数,公差为负数的等差数列,{an}的各项取绝对值后得到一个新数列,因此求{bn}的前10项和可转化为求数列{an}的和.
解答: 解:∵Sn=10n-n2
∴Sn-1=10(n-1)-(n-1)2,(n≥2)
两式相减可得an=11-2n
∵n=1时,a1=S1=10-1=9,满足上式
∴an=11-2n,∴bn=|11-2n|.
显然n≤5时,bn=an=11-2n,Tn=10n-n2
n≥6时,bn=-an=2n-11,
∴Tn=(a1+a2+…+a5)-(a6+a7+…+an)=2S5-Sn=50-10n+n2
故Tn=
10n-n2(n≤5)
n2-10n+50(n≥6)

数列{bn}的前10项和为:
T10=102-10×10+50=50
点评:本题主要考查了数列的通项与求和方法的运用,考查学生的分析能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,1)为圆心,以
2
为半径的圆在以直角坐标系的原点为极点,以ox轴为极轴的极坐标系中对应的极坐标方程为(  )
A、ρ=2
2
cos(θ-
π
4
B、ρ=2
2
sin(θ-
π
4
C、ρ=2
2
cos(θ-1)
D、ρ=2
2
sin(θ-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,且短半轴b=1,F1,F2为其左右焦点,P是椭圆上动点.
(Ⅰ)求椭圆方程;
(Ⅱ)求
PF1
PF2
取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过抛物线y2=16x的焦点,且与双曲线x2-y2=2有相同的焦点.
(1)求椭圆E的标准方程;
(2)设点M(m,0)在椭圆E的长轴上,点P是椭圆上任意一点,当|
MP
|最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-3)ex的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别是a,b,c,已知向量
m
=(a-b,c-a),
n
=(a+b,c)且
m
n
=0.
(Ⅰ)求角B的大小;
(Ⅱ)求函数f(A)=sin(A+
π
6
)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量
m
=(1,2),
n
=(cos2A,cos2
A
2
),且
m
n
=1.
(1)求角A的大小;
(2)若b+c=2a=2
3
,求证:△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一杯糖水,重b克,其中含糖a克,现在向糖水中再加m克糖,此时糖水变得更甜了.(其中a,b,m∈R+).
(1)请从上面事例中提炼出一个不等式(要求:①使用题目中字母;②标明字母应满足条件)
(2)利用你学过的证明方法对提炼出的不等式进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=5,a5+a6+a7=39.
(1)求数列{an}的通项公式;
(2)设bn=
4
(an-1)(an+1)
 (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案