精英家教网 > 高中数学 > 题目详情
13.关于直线a,b,c以及平面α,β,给出下列命题:
①若a∥α,b∥α,则a∥b
②若a∥α,b⊥α,则a⊥b
③若a?α,b?α,且c⊥a,c⊥b,则c⊥α
④若a⊥α,a∥β,则α⊥β
其中正确的命题是(  )
A.①②B.②③C.②④D.①④

分析 ①,若a∥α,b∥α,则a与b位置关系有相交、异面、平行
②,设β为过a的平面,且α∩β=l.由a∥α,得a∥l.由b⊥l,得b⊥a.
③,根据线面垂直的判定定理,可判断;
④,由直线a∥平面α,各平面α中必存在一条直线b与直线a平行,由此根据直线a⊥平面β,利用平面与平面垂直的判定定理得α⊥β.

解答 解:对于①,若a∥α,b∥α,则a与b位置关系有相交、异面、平行,故错;
对于②,设β为过a的平面,且α∩β=l.∵a∥α,∴a∥l.∵直线b⊥平面α,l?α,∴b⊥l,∴b⊥a.故a⊥b.故正确;
对于③,若a?α,b?α,a∥b,c⊥a,c⊥b时,由于a、b不一定相交,故c⊥α不一定成立,故③错误;
对于④,∵直线a∥平面α,∴平面α中必存在一条直线b与直线a平行,∵直线a⊥平面β,∴直线b⊥平面β,∴α⊥β.故正确;
故选:C

点评 本题以命题的真假判断为载体,考查了空间直线和平面的位置关系,熟练掌握空间线面关系的判定定理,性质定理和几何特征是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某电脑公司有5名产品推销员,其中工作年限与年推销金额数据如下表:
推销员编号12345
工作年限x(年)35679
推销金额y(百万元)23345
(1)请在如图中画出上表数据的散点图;
(2)求年推销金额y关于工作年限x的线性回归方程;
(3)若某推销员工作年限为11年,试估计他的年推销金额.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1:ρ=4sinα,直线C2:α=$\frac{π}{4}$(ρ∈R),点P(x,y)在曲线C1
(1)求2x+y的取值范围;
(2)若曲线C1与曲线C2相交,求交点间的距离;若不相交,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆C:x2+y2-4x-2y+1=0,直线l:3x-4y+m=0,圆上存在两点到直线l的距离为1,则m的取值范围是(-17,-7)∪(3,13).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.P为双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$右支上一点,F1,F2分别为双曲线的左、右焦点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直线PF2交y轴于点A,则△AF1P的内切圆半径为(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示多面体中,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°
(Ⅰ)作出题中多面体的三视图,并标出相应长度
(Ⅱ)求证:AC⊥平面BDE
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0没有实数根”时,要做的假设是(  )
A.方程x2+ax+b=0至多有一个实根B.方程x2+ax+b=0至少有一个实根
C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC中,$a=\sqrt{2},b=\sqrt{3},A={45°}$,则三角形的解的个数(  )
A.0个B.1个C.2个D.0个或1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{3+4i}{{{{(1-i)}^2}}}$=(  )
A.$-2+\frac{3}{2}i$B.$-2-\frac{3}{2}i$C.$2+\frac{3}{2}i$D.$2-\frac{3}{2}i$

查看答案和解析>>

同步练习册答案