精英家教网 > 高中数学 > 题目详情
11.函数f(x)=$\sqrt{1-x}({x≤1})$,若函数g(x)=x2+ax是偶函数,则f(a)=1.

分析 根据g(x)为偶函数即可得到a=0,从而便求出f(a)=1.

解答 解:函数g(x)=x2+ax是偶函数;
∴g(-x)=g(x);
∴x2-ax=x2+ax;
∴ax=0;
∴a=0;
∴f(a)=f(0)=1.
故答案为:1.

点评 考查偶函数的定义,以及已知函数解析式求函数值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知过抛物线x2=4y的焦点F的直线交抛物线于A,B两个不同的点,过A,B分别作抛物线的切线,且二者相交于点C,则△ABC的面积的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{2x-y≥4}\end{array}\right.$,则目标函数z=3x+y的最小值为(  )
A.11B.3C.2D.$\frac{13}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上的动点P到两个焦点的距离之和为6,且到右焦点距离的最小值为$3-2\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l和椭圆C交于M、N两点,A为椭圆的右顶点,$\overrightarrow{AM}•\overrightarrow{AN}=0$,求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.集合A=$\left\{{x\left|{y=\sqrt{1-x}}\right.}\right\},B=\left\{{x\left|{{y^2}=4x,x∈R}\right.}\right\}$,则A∩B[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,且an>0,${a_n}•{S_n}={({\frac{1}{4}})^n}({n∈{N^*}})$
(1)若bn=1+log2(Sn•an),求数列{bn}的前n项和Tn
(2)若0<θn<$\frac{π}{2}$,2n•an=tanθn,求证:数列{θn}为等比数列,并求出其通项公式;
(3)记${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+|{{a_3}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}$|,若对任意的n∈N*,cn≥m恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合 M={(x,y)|F(x,y)=0}为平面直角坐标系x Oy内的点集,若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,则称点集 M满足性质 P.给出下列四个点集:
①R={(x,y)|sinx-y+1=0}②S={(x,y)|lnx-y=0}
③T={(x,y)|x2+y2-1=0}④W={(x,y)|xy-1=0}
其中所有满足性质 P的点集的序号是(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2014}}}}{2014}+\frac{{{x^{2015}}}}{2015}$,若函数f(x)的零点都在[a,b](a<b,a,b∈Z)内,则b-a的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观,样本容量1000的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为(  )
A.780B.680C.618D.460

查看答案和解析>>

同步练习册答案