精英家教网 > 高中数学 > 题目详情

(本题满分12分)
一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度(单位:m/s)紧急刹车至停止。求:
(I)从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。

(Ⅰ)经过的时间为10s;(Ⅱ)紧急刹车后火车运行的路程为55ln11米。

解析试题分析:(1)求出汽车刹车到停止所需的时间,因为汽车刹车停止后不再运动,然后根据速度时间公式v=v0+at,得到时间。
(2)利用导数的物理意义,可知紧急刹车后火车运行的路程即为
解:(Ⅰ)令,注意到t>0,得t=10  (6分)
即经过的时间为10s;
(Ⅱ)
即紧急刹车后火车运行的路程为55ln11米。 (12分)
考点:本题主要考查了物理中汽车刹车停止后不再运动,以及掌握匀变速直线运动的速度时间公式v=v0+at,以及位移的运算。
点评:解决该试题的关键是理解刹车停止的时间,然后利用导数的物理意义得到被积函数速度函数,求解运行的位移即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;
(Ⅱ)当时,恒成立,求整数的最大值;
(Ⅲ)试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设为奇函数,a为常数。
(1)求a的值;
(2)证明在区间上为增函数;
(3)若对于区间上的每一个的值,不等式恒成立,求实数m  的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(I)求的单调区间;(II)求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线过点,且在点处的切线斜率为2.
(Ⅰ)求的值;
(Ⅱ)求的极值点;
(Ⅲ)对定义域内任意一个,不等式是否恒成立,若成立,请证明;若不成立,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的单调增区间是(0,1)求m的值。
(2)当时,函数的图象上任意一点的切线斜率恒大于3m,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数f(x)的极值;
(2)如果当时,不等式恒成立,求实数k的取值范围;
(3)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论的单调性;
(2)设,证明:当时,
(3)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:(x0)<0.(本题满分14分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;
(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案