精英家教网 > 高中数学 > 题目详情

已知函数 
(1)求函数f(x)的极值;
(2)如果当时,不等式恒成立,求实数k的取值范围;
(3)求证.

(1)函数处取得极大值f(1)="1" ,无极小值。
(2)
(3)见解析

解析试题分析:(1)利用导数的思想,通过导数的符号判定函数的单调性,进而得到极值。
(2)要证明不等式恒成立,移项,右边为零,将左边重新构造新的函数,证明函数的最小值大于零即可。
(3)在第二问的基础上,放缩法得到求和的不等式关系。
解:(1)因为 x >0,则,…………1分
时,;当时,.
所以在(0,1)上单调递增;在上单调递减,
所以函数处取得极大值f(1)="1" ,无极小值。…………3分
(2)不等式即为 记
所以…………7分
,则,     ,    
上单调递增,  ,从而
上也单调递增,  所以,所以 . ……9分
(3)由(2)知:恒成立,即, 
,则
所以 , ,…  …  
,                                …………12分
叠加得:
 .
,所以 …………14分
考点:本题主要考查了导数在研究函数中的运用。
点评:解决该试题的关键是对于导数的符号与函数单调性的熟练的运用,并能结合单调性求解函数的 极值和最值问题。难点是对于递进关系的试题,证明不等式,往往要用到上一问的结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知处有极值,其图象在处的切线与直线平行.
(1)求函数的单调区间;
(2)若时,恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度(单位:m/s)紧急刹车至停止。求:
(I)从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)求函数f(x)=- 2的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)曲线C:,过点的切线方程为,且交于曲线两点,求切线与C围成的图形的面积。  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求 的最小值.
(3)证明不等式: 

查看答案和解析>>

同步练习册答案