精英家教网 > 高中数学 > 题目详情

(本小题满分12分)求函数f(x)=- 2的极值.

当x=-1时函数有极小值为-3;当x=1时函数有极大值为-1.

解析试题分析:先求,然后列表,再根据左正右负为极大值,左负右正为极小值,可求出极值.
由于函数f(x)的定义域为R     ----------------  2 分
f'(x)=   -----------    6 分
令f'(x)=0得x=-1或x=1列表:

x
(-∞,-1)
-1
(-1,1)
1
(1, ∞)
f'  (x)
-
0
+
0
-
f(x)

极小值

极大值

                      -------------      8 分
由上表可以得到
当x=-1时函数有极小值为-3;当x=1时函数有极大值为-1.       --------- 12分
考点:导数在求极值中的应用.
点评:掌握极大值与极小值的判断方法是解决本小题的关键.判断方法是极值点左正右负为极大值点;极值点的左负右正为极小值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
函数,过曲线上的点的切线方程为
(Ⅰ)若时有极值,求的表达式;
(Ⅱ)若函数在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)如果函数的单调递减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图像过点的切线方程;
(3)对一切的,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线过点,且在点处的切线斜率为2.
(Ⅰ)求的值;
(Ⅱ)求的极值点;
(Ⅲ)对定义域内任意一个,不等式是否恒成立,若成立,请证明;若不成立,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数f(x)的极值;
(2)如果当时,不等式恒成立,求实数k的取值范围;
(3)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)讨论函数在定义域内的极值点的个数;
(Ⅱ)若函数处取得极值,对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数).
①当时,求曲线在点处的切线方程;
②设的两个极值点,的一个零点.证明:存在实数,使得按某种顺序排列后构成等差数列,并求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
???(1)若函数是定义域上的单调函数,求实数的取值范围;
???(2)求函数的极值点。

查看答案和解析>>

同步练习册答案