精英家教网 > 高中数学 > 题目详情

已知函数
(1)讨论的单调性;
(2)设,证明:当时,
(3)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:(x0)<0.(本题满分14分)

(1)若单调增加.
单调增加,在单调减少. 
(2)见解析。

解析试题分析:解:(1)…………………………………………1分
 …………………………2分
(i)若单调增加.…………………3分
(ii)若
且当
所以单调增加,在单调减少. ……………………5分
(2)设函数

…………………………………7分
时,,所以单调递增,
故当  ……………………………9分
(3)由(I)可得,当的图像与x轴至多有一个交点,
,从而的最大值为
不妨设
由(II)得
从而
由(I)知,  …………………………………………………14分
考点:本题考查利用导数求函数的单调性、综合分析和解决问题的能力以及分类讨论的思想方法。
点评:解答本题易出现以下失误:①忘记求函数的定义域;②想不到分类讨论,从而在判断函数的单调性时出现错误。当求函数的单调性时,如果无法判断导函数的符号,自然而然的就应该想到分类讨论,为了避免错误的发生,在平常做题时就要养成分析思路的习惯。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)设为实数,函数,.
(1)求的单调区间与极值;
(2)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度(单位:m/s)紧急刹车至停止。求:
(I)从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)曲线C:,过点的切线方程为,且交于曲线两点,求切线与C围成的图形的面积。  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题满分15分)已知函数.
(Ⅰ)当时,求函数的极值点;
(Ⅱ)若函数在导函数的单调区间上也是单调的,求的取值范围;
(Ⅲ) 当时,设,且是函数的极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知函有极值,且曲线处的切线斜率为3.
(1)求函数的解析式;
(2)求在[-4,1]上的最大值和最小值。
(3)函数有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)设,若对任意,均存在,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.试求的值。

查看答案和解析>>

同步练习册答案