精英家教网 > 高中数学 > 题目详情
设数列{bn}的前n项和为Tn,已知bn=
1
22n-1
,求证:Tn
7
8
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得到Tn=
1
2
+
1
22
+
1
24
+
1
28
+
1
216
+…+
1
22n-1
1
2
+
1
22
+
1
24
+
1
26
+
1
28
+…+
1
22(n-1)
,由此能证明Tn
7
8
解答: 解:∵bn=
1
22n-1

∴Tn=
1
2
+
1
22
+
1
24
+
1
28
+
1
216
+…+
1
22n-1

1
2
+
1
22
+
1
24
+
1
26
+
1
28
+…+
1
22(n-1)

=
1
2
+
1
4
(1-
1
4n-1
)
1-
1
4

=
1
2
+
1
3
(1-
1
4n-1
)

1
2
+
1
3
=
5
6
7
8

∴Tn
7
8
点评:本题考查不等式的证明,是中档题,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的(  )
A、充要条件
B、充分不必要
C、既不充分也不必要
D、必要不充分

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={-1,0,1},N={0,1},则M∩N等于(  )
A、{-1,0,1}B、{0,1}
C、{1}D、{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
3
+i
1-
3
i
.
z
是z的共轭复数,则z•
.
z
=(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,
(Ⅰ)证明:直线B1D1∥平面ABCD;
(Ⅱ)求异面直线AB与B1D1所成的角;
(Ⅲ)若正方体的棱长为1,求三棱锥D-BB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆
x2
4
+y2=1的左、右焦点,点P是该椭圆上的一个动点.
(1)求椭圆的离心率
(2)求
PF1
PF2
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=2,an=2
2Sn-1
+2,Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)求bn=
2
anan-1
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
3
)+1
(1)若函数y=f(x)的图象关于直线x=t(t>0)对称,求t的最小值;
(2)若存在x0∈[-
π
12
π
6
],使得mf(x0)-2=0成立,求实数m的取值范围;
(3)若存在区间[a,b](a,b∈R且a<b),使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=
76000v
v2+18v+20l
.如果l=5,则最大车流量为多少?(单位:辆/小时)

查看答案和解析>>

同步练习册答案