精英家教网 > 高中数学 > 题目详情
11.设x1,x2是方程x2-mx+(m-2)2=0的两个实数根.求|x1-x2|的取值范围.

分析 由△≥0求出m的范围,利用根与系数的关系得出|x1-x2|2的关系,进而得出|x1-x2|的范围.

解答 解∵方程x2-mx+(m-2)2=0有两个实数根,∴△=m2-4(m-2)2≥0,解得$\frac{4}{3}$≤m≤4.
∵x1+x2=m,x1x2=(m-2)2,∴|x1-x2|2=(x1+x22-4x1x2=m2-4(m-2)2=-3m2+16m-16=-3(m-$\frac{8}{3}$)2+$\frac{16}{3}$.
∵$\frac{4}{3}$≤m≤4,∴当m=$\frac{8}{3}$时,|x1-x2|2取得最大值$\frac{16}{3}$,当m=4时,|x1-x2|2取得最小值0.
∴0≤|x1-x2|2≤$\frac{16}{3}$.∴0≤|x1-x2|≤$\frac{4\sqrt{3}}{3}$.
∴|x1-x2|的取值范围时[0,$\frac{4\sqrt{3}}{3}$].

点评 本题考查了二次函数的根的个数与系数的关系,根与系数的关系,一元二次函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x),f(x+1)+f(x-1)=2x2-4x对任意实数x都成立,试求f(1-$\sqrt{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x2+ax,x∈[0,1],求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知在三棱锥P-ABC中,PA=4,AC=2$\sqrt{7}$,PB=BC=2$\sqrt{3}$,PA⊥平面PBC,则三棱锥P-ABC的内切球的表面积为$\frac{9π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={y|y=log2x,0<x≤2},B={y|y=($\frac{1}{2}$)x,x>-1},则∁A∪B(A∩B)=(  )
A.(-∞,0]B.(-∞,0]∪(1,2)C.[1,2)D.(-∞,0)∪[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简下列各式.
(1)sin(x+$\frac{π}{3}$)+2sin(x-$\frac{π}{3}$)-$\sqrt{3}$cos($\frac{2}{3}$π-x)
(2)tan70°cos10°+$\sqrt{3}$sin10°tan70°-2cos40°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,不是偶函数的是(  )
A.y=sin(2x-$\frac{π}{2}$)B.y=cos(2x-$\frac{π}{2}$)C.y=10x+10-xD.y=ln(x2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\frac{1}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A_n}}$与$\overrightarrow{i}$的夹角,则$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+…+\frac{{cos{θ_{2016}}}}{{sin{θ_{2016}}}}$的值为$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.log42-log48等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案