精英家教网 > 高中数学 > 题目详情
如图所示,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆交于点D,N为BC延长线上一点,ND交△ABC的外接圆于点M.求证:
(1)DB=DC;
(2)DC2=DM•DN.
考点:与圆有关的比例线段
专题:立体几何
分析:(1)由于四点A、B、C、D共圆,可得∠EAD=∠BCD,∠DAC=∠DBC.由于AD是△ABC外角∠EAC的平分线,可得∠EAD=∠DAC,即可证明;
(2)连接BM,CM.可得∠DBM=∠DCM,∠CBM=∠CDM,再利用(1)和圆的性质可得∠N=∠DCM,即可证明△CDM∽△NDC.进而得出答案.
解答: 证明:(1)∵四点A、B、C、D共圆,∴∠EAD=∠BCD,∠DAC=∠DBC,
∵AD是△ABC外角∠EAC的平分线,
∴∠EAD=∠DAC,
∴∠DBC=∠BCD.
∴DB=DC.
(2)连接BM,CM.
则∠DBM=∠DCM,∠CBM=∠CDM,
∴∠N=∠BCD-∠CDM=∠DBC-∠CBM=∠DBM=∠DCM,
又∵∠CDM公用,
∴△CDM∽△NDC.
CD
ND
=
DM
CD

∴DC2=DM•DN.
点评:本题考查了四点共圆的性质、角平分线的性质、相似三角形的判定与性质,考查了推理能力和辅助线的作法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=xex-a有两个零点,则实数a的取值范围是(  )
A、-
1
e
<a<0
B、a>-
1
e
C、-e<a<0
D、0<a<e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项为an=2n-1(n∈N*),把数列{an}的各项排列成如图所示的三角形数阵.记M(s,t)表示该数阵中第s行的第t个数,则该数阵中的数2011对应于(  )
A、M(45,15)
B、M(45,16)
C、M(46,15)
D、M(46,25)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知
2a+b
c
=
cos(A+C)
cosC

(1)求角C的大小,
(2)若c=2,求使△ABC面积最大时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为一级;在35-75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.某试点城市环保局从该市市区2013年3月每天的PM2.5监测数据中随机抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(Ⅰ)求该组数据的平均数和方差;
(Ⅱ)若从这6天的数据中随机抽出2天,求恰有一天空气质量超标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,等腰梯形ABCD中,AD∥BC,AD=
1
2
BC,AB=AD,∠ABC=60°,E是BC的中点,如图2,将△ABE沿AE折起,使面BAE⊥面AECD,连接BC,BD,P是棱BC上的中点.
(1)求证:AE⊥BD;
(2)若AB=2,求三棱锥B-AEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,∠BAD
=90°,PA=AD=AB=
1
2
CD=1,M为PB的中点.
(1)试在CD上确定一点N,使得MN∥平面PAD.
(2)点N在满足(1)的条件下,求直线MN与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-1,2]上先后随机取两个数x、y
(Ⅰ)求先后随机得到的两个数x、y满足y<3x+2的概率.
(Ⅱ)若先后随机得到的两个数x、y∈N,求满足y=2x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x(ex-ae-x)(x∈R)是偶函数,则实数a=
 

查看答案和解析>>

同步练习册答案