精英家教网 > 高中数学 > 题目详情
函数f(x)=xex-a有两个零点,则实数a的取值范围是(  )
A、-
1
e
<a<0
B、a>-
1
e
C、-e<a<0
D、0<a<e
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:求出函数的导函数,求出函数的最小值,根据函数的零点和最值关系即可得到结论.
解答: 解:∵函数f(x)=xex-a的导函数f′(x)=(x+1)ex
令f′(x)=0,则x=-1
∵当x∈(-∞,-1)时,f′(x)<0,函数f(x)单调递减;
当x∈(-1,+∞)时,f′(x)>0,函数f(x)单调递增;
故当x=-1时,函数取最小值f(-1)=-e-1-a
若函数f(x)=xex-a有两个零点,
则f(-1)=-e-1-a<0
即a>-
1
e

又∵a≥0时,x∈(-∞,-1)时,f(x)=xex-a<0恒成立,不存在零点
故a<0
综上,-
1
e
<a<0,
故选:A
点评:本题考查的知识点是根的存在性及根的个数判断,其中熟练掌握函数零点与方程根之间的对应关系是解答的关键,利用导数是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=-1+log(n+1)(x+1)经过的定点(与m无关)恰为抛物线y=ax2的焦点,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线θ=
π
6
截圆ρ=2cos
π
6
(ρ∈R)所得的弦长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题:
①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数;
③函数f(x)的定义域是[-2,2],则函数f(x+1)的定义域为[-1,3];
④一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:p:
1
x2-x-6
<0,q:x2-2x-3<0,则¬p是¬q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

给出四个命题:
①各侧面都是正方形的棱柱一定是正棱柱;
②各对角面是全等矩形的平行六面体一定是长方体;
③有两个侧面垂直于底面的棱柱一定是直棱柱;
④长方体一定是正四棱柱.
其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设a与b是异面直线,下列命题正确的是(  )
A、有且仅有一条直线与a,b都垂直
B、过直线a有且仅有一个平面b平行
C、有平面与a,b都垂直
D、过空间任意一点必可作一直线与a,b相交

查看答案和解析>>

科目:高中数学 来源: 题型:

一个棱长都为a的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为(  )
A、
7
3
πa2
B、2πα2
C、
11
4
πα2
D、
4
3
πα2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆交于点D,N为BC延长线上一点,ND交△ABC的外接圆于点M.求证:
(1)DB=DC;
(2)DC2=DM•DN.

查看答案和解析>>

同步练习册答案