精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)为定义域在(0,+∞)上的增函数,且满足f(2)=1,f(xy)=f(x)+(y)
(1)求f(1),f(4)的值.
(2)如果f(8-x)-f(x-3)≤4,求x的取值范围.

分析 (1)令x=y=1,可求出f(1),令x=y=2,结合条件,可求出f(4);
(2)将4换成f(16),结合条件得到f(8-x)<f(16(x-3)),再由单调性,即可求出x的取值范围,注意定义域.

解答 解:(1)∵f(xy)=f(x)+f(y),∴令x=y=1,则f(1)=2f(1),即f(1)=0,
令x=y=2,则f(4)=2f(2)=2.
(2)令x=y=4,则f(16)=2f(4)=4.
 不等式f(8-x)-f(x-3)≤4,即f(8-x)≤f(x-3)+4
即f(8-x)≤f(x-3)+f(16)=f(16(x-3)
由于函数在定义域(0,+∞)上为增函数,⇒
$\left\{\begin{array}{l}{8-x>0}\\{x-3>0}\\{8-x≤16(x-3)}\end{array}\right.$   解得不等式组得:$\frac{56}{17}≤x<8$
所以x的取值范围:[$\frac{56}{17}$,8)

点评 本题主要考查函数的单调性及运用,考查解决抽象函数值的常用方法:赋值法,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a=0.21.5,b=20.1,c=0.21.3,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x|x-a|的定义域为D,其中a为常数;
(1)若D=R,且f(x)是奇函数,求a的值;
(2)若a≤-1,D=[-1,0],函数f(x)的最小值是g(a),求g(a)的最大值;
(3)若a>0,在[0,3]上存在n个点xi(i=1,2,…,n,n≥3),满足x1=0,xn=3,x1<x2<…<xn,使|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+|f(xn-1)-f(xn)|=$\frac{13}{2}$,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若存在两个正实数x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是$({-∞,0})∪[{\frac{3}{2e},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{2{x}^{2}-1}{{x}^{2}+2}$,则函数f(x)的值域是(  )
A.[-$\frac{1}{2}$,1]B.[-$\frac{1}{2}$,2]C.[-$\frac{1}{2}$,2)D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=x+\frac{2}{x}$,利用定义证明:
(1)f(x)为奇函数;
(2)f(x)在$[\sqrt{2}$,+∞)上是增加的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q在侧棱PC上.
(I)求证:AD⊥平面PBE;
(II)若Q是PC的中点,求证PA∥平面BDQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{a}(x≥0)}\\{|x-2|(x<0)}\end{array}\right.$,且f(-2)=f(2),则f(4)=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2-2x+4的单调递增区间为[1,+∞).

查看答案和解析>>

同步练习册答案