精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤2}\\{2x-y-3≤0}\end{array}\right.$,则目标函数z=$\frac{y}{x}$的最大值为1.

分析 画出满足条件的平面区域,求出角点的坐标,结合z=$\frac{y}{x}$的几何意义求出z的最大值即可.

解答 解:画出满足条件的平面区域,如图示:
由$\left\{\begin{array}{l}{x=1}\\{x+y=2}\end{array}\right.$,解得:A(1,1),
∴z=$\frac{y}{x}$的最大值是1,
故答案为:1.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E为C1D1的中点.
(1)求证:DE⊥平面BEC;
(2)求三棱锥C-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-3$\overrightarrow{b}$)=-72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{3}{2}$,过其右焦点F(3,0),且垂直于x轴的直线与双曲线交于点A、B,则|AB|=(  )
A.4B.5C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,若1+i=z(1-i),则z=(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦点,且过点(3$\sqrt{2}$,2)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin($\frac{x}{2}$+$\frac{π}{4}$),则f($\frac{π}{2}$)=(  )
A.-1B.1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.偶函数f(x)定义在(-1,0)∪(0,1)上,且$f(\frac{1}{2})=0$,当x>0时,总有$(\frac{1}{x}-x)f'(x)•ln(1-{x^2})>2f(x)$,则不等式f(x)<0的解集为(  )
A.{x|-1<x<1且x≠0}B.$\left\{x\right.|-1<x<-\frac{1}{2}$或$\frac{1}{2}<x<\left.1\right\}$
C.$\left\{{x|-\frac{1}{2}}\right.<x<\frac{1}{2}$且x≠0}D.{x|-1<x<-$\frac{1}{2}$或$0<x<\left.{\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|x2-5x-6<0},B={x|-3<x<3},则A∩B=(  )
A.(-3,3)B.(-3,6)C.(-1,3)D.(-3,1)

查看答案和解析>>

同步练习册答案