精英家教网 > 高中数学 > 题目详情
4.下列函数为奇函数的是(  )
A.f(x)=x3-1B.f(x)=x+cosxC.f(x)=xsinxD.f(x)=lg(x+$\sqrt{{x}^{2}+1}$)

分析 根据函数奇偶性的定义进行判断即可.

解答 解:A.当f(x)=x3-1,f(1)=0,f(-1)=-2,则f(-1)≠-f(1)且f(-1)≠f(1),则f(x)是非奇非偶函数
B.f(-x)=-x+cosx,则f(-x)≠-f(x),则函数f(x)不是奇函数,
C.f(-x)=-xsin(-x)=xsinx=f(x),则函数f(x)是偶函数,
D.f(-x)+f(x)=lg(-x+$\sqrt{{x}^{2}+1}$)+lg(x+$\sqrt{{x}^{2}+1}$)=lg(-x+$\sqrt{{x}^{2}+1}$)(x+$\sqrt{{x}^{2}+1}$)=lg(x2+1-x2)=lg1=0,
则f(-x)=-f(x),即函数f(x)是奇函数,
故选:D.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数y=sin(ωx+$\frac{π}{3}$)(ω>0)在[$\frac{π}{4}$,$\frac{π}{2}$]上是减函数,则ω的取值范围$[{\frac{2}{3},\frac{7}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足:a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求数列{an}的通项;
(2)设数列{bn}满足3bn=$\frac{3}{a_n}$,求数列{$\frac{b_n}{a_n}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于?x∈R,不等式|x-2|+|x+4|≥m2-5m恒成立,则实数m的取值范围是-1≤m≤6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)解不等式:$\sqrt{x-1}$+2x≤5
(2)解关于x的不等式:$\frac{ax-1}{x-2}$>$\frac{a}{2}$(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=mx+k(x∈R)的图象与y轴的交点为(0,2),且过点(1,4),则m=2,k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(5cosα,4),$\overrightarrow{b}$=(3,4tanα),其中α∈($\frac{π}{2}$,π).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin2α的值;
(2)若|$\overrightarrow{a}$|=5,向量$\overrightarrow{c}$=(2,0),求证:($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若M={x|log2x≤1},N={x|x2-2x≤0},则“f(x)>0在x∈M上恒成立”是“f(x)>0在x∈N上恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要的条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中正确的是(  )
A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台
B.两个底面平行且相似,其余各面都是梯形的多面体是棱台
C.棱台的底面是两个相似的正方形
D.棱台的侧棱延长后必交于一点

查看答案和解析>>

同步练习册答案