精英家教网 > 高中数学 > 题目详情
已知数列{an}中,当n为奇数时,an=5n+1,当n为偶数时,an=2 
n
2
,若数列{an}共有2m项,求这个数列的前2m项的和S2m
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件利用分组求和法推导出S2m=5[1+3+5+…+(2m-1)]+m+(2+22+23+…+2m),由此能求出结果.
解答: 解:∵数列{an}中,当n为奇数时,an=5n+1,当n为偶数时,an=2 
n
2

数列{an}共有2m项,
∴S2m=5[1+3+5+…+(2m-1)]+m+(2+22+23+…+2m
=5×
m(1+2m-1)
2
+m+
2(1-2m)
1-2

=5m2+m+2m+1-2.
点评:本题考查数列的前2m项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若z=
1
2
|z|+i2015(i为虚数单位),则复数z对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.
(1)若函数y=f(x)在x=a,x=b,x=c处取到极值,且a,b,c成等差数列,求t的值;
(2)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式 f(x)≤x恒成立.求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x2,x+1),
b
=(1-x,t),函数f(x)=
a
b

(Ⅰ)若t=0,求f(x)的单调区间;
(Ⅱ)若函数f(x)的两个极值点分别在区间(-1,1)和(1,+∞)上,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有4名同学站成一排,要求甲、乙两名同学必须相邻,有
 
种不同的站法(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

求矩阵A=
32
21
的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x∈(0,+∞)时,f(x)=ax+2lnx(a∈R)
(1)求f(x)的解析式;
(2)是否存在负实数,当x∈[-e,0)时,使得f(x)的最小值是4,若存在,求a的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N+).
(1)求a2,a3,a4的值及数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

分别求直线y=kx与双曲线2x2-y2=2(1)没有交点(2)有两个交点(3)只有一个交点时斜率k的取值范围.

查看答案和解析>>

同步练习册答案