分析 (I)由勾股定理得出CD⊥AC,由PA⊥平面ABCD得出CD⊥PA,故CD⊥平面PAC;
(II)以A为原点建立坐标系,分别求出平面MAB和平面ABC的法向量,求出法向量的夹角即可得出二面角的大小.
解答
解:(Ⅰ)连结AC,
∵在△ABC中,AB=AC=2,BC=2$\sqrt{2}$,
∴BC2=AB2+AC2,∴AB⊥AC,
∵AB∥CD,∴AC⊥CD,
又∵PA⊥底面ABCD,∴PA⊥CD,
∵AC∩PA=A,∴CD⊥平面PAC;
(Ⅱ)如图建立空间直角坐标系,
则A(0,0,0),P(0,0,2),B(2,0,0),C(0,2,0),D(-2,2,0),
∵M是棱PD的中点,∴M(-1,1,1),∴$\overrightarrow{AM}$=(-1,1,1),$\overrightarrow{AB}$=(2,0,0).
设$\overrightarrow{n}$=(x,y,z)为平面MAB的法向量,
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AM}=0}\\{\overrightarrow{n}•\overrightarrow{AB}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-x+y+z=0}\\{2x=0}\end{array}\right.$,令y=1,得$\overrightarrow{n}$=(0,1,-1),
∵PA⊥平面ABCD,
∴$\overrightarrow{AP}$=(0,0,2)是平面ABC的一个法向量.
∴cos<$\overrightarrow{n}$,$\overrightarrow{AP}$>=$\frac{\overrightarrow{n}•\overrightarrow{AP}}{|\overrightarrow{n}||\overrightarrow{AP}|}$=$\frac{-2}{2×\sqrt{2}}$=-$\frac{\sqrt{2}}{2}$.
∵二面角M-AB-C 为锐二面角,
∴二面角M-AB-C的大小为$\frac{π}{4}$.
点评 本题考查了线面垂直的判定,空间向量的应用与二面角的计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数 | |
| B. | ?α,β∈R,使cos(α+β)=cosα+cosβ | |
| C. | 向量$\overrightarrow a=(2,-1)$,$\overrightarrow b=(-3,0)$,则$\overrightarrow a$在$\overrightarrow b$方向上的投影为-2 | |
| D. | “|x|≤1”是“x<1”的既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | [2+ln2,+∞) | C. | [2e,+∞) | D. | [2+$\frac{2}{e}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -i | B. | i | C. | 1 | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com