精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)若对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c恒成立,求实数c的最小值.

分析 (1)求出函数的导数,根据f′(1)=f′(-1)=0,求出a,b的值,从而求出函数的解析式即可;
(2)问题转化为|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|,根据函数的单调性求出f(x)的最值,从而求出c的最小值.

解答 解:(1)f′(x)=3ax2+2bx-3,
依题意,f′(1)=f′(-1)=0,
解得a=1,b=0,
∴f(x)=x3-3x;
(2)∵f(x)=x3-3x,
∴f′(x)=3x2-3=3(x+1)(x-1),
当-1<x<1时,f′(x)<0,
故f(x)在区间[-1,1]上为减函数,
fmax(x)=f(-1)=2,
fmin(x)=f(1)=-2,
∵对于区间[-1,1]上任意两个自变量的值x1,x2
都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4,
所以c≥4,
所以c的最小值为4.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)=log2(ax-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是(  )
A.$0<\frac{1}{a}<\frac{1}{b}<1$B.$0<\frac{1}{b}<a<1$C.$0<b<\frac{1}{a}<1$D.$0<\frac{1}{a}<b<1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的个数是(  )
①“m=-1”是“直线mx+(2m-1)y+1=0和直线3x+my+2=0垂直”的充要条件;
②已知$f(x)={2014^x}•|{{{log}_{\frac{1}{2014}}}x}|-1$,则函数f(x)有2个零点;
③命题“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,${x_0}^3-{x_0}^2+1>0$”
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将一张画有平面直角坐标系的图纸折叠一次,使得点A(0,2)与点B(1,1)重合,若此时点C(7,3)与点D(m,n)重合,则m的值为(  )
A.$\frac{5}{2}$B.2C.4D.$\frac{17}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A、B两点,已知A、B的纵坐标分别为$\frac{{\sqrt{10}}}{10}$,$\frac{{\sqrt{2}}}{10}$.
(Ⅰ)求tan(α+β)的值;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x、y满足约束条件$\left\{{\begin{array}{l}{2x+3y-3≥0}\\{x-y+1≥0}\\{x-1≤0}\end{array}}\right.$,则z=x+2y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系中,设△ABC的顶点分别为A(0,a),B(b,0),C(c,0),点P(0,p)在线段AO上(异于端点),若a,b,c,p均为非零实数,直线BP,CP分别交直线AC,AB于点E,F.某同学已正确算得直线OE的方程为($\frac{1}{b}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0,则直线OF的方程为(  )
A.($\frac{1}{c}$-$\frac{1}{b}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0B.($\frac{1}{b}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0C.(-$\frac{1}{b}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0D.($\frac{1}{b}$+$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{\sqrt{x-3}}{|x+1|-5}$的定义域为(  )
A.[3,+∞)B.[3,4)∪(4,+∞)C.(3,+∞)D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x∈R,则“x=1”是“复数z=(x2-1)+(x+1)i为纯虚数”的(  )
A.充分不必要条件B.充分必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案