精英家教网 > 高中数学 > 题目详情
15.将一张画有平面直角坐标系的图纸折叠一次,使得点A(0,2)与点B(1,1)重合,若此时点C(7,3)与点D(m,n)重合,则m的值为(  )
A.$\frac{5}{2}$B.2C.4D.$\frac{17}{4}$

分析 根据题意,得到折痕为A,B的对称轴;也是 C,D的对称轴,求出A,B的斜率及中点,求出对称轴方程,然后求出C,D的斜率令其等于对称轴斜率的负倒数,求出C,D的中点,将其代入对称轴方程,列出方程组,求出m,n的值,得到答案.

解答 解:根据题意,得到折痕为A,B的对称轴;也是 C,D的对称轴,
AB的斜率为kAB=-1,其中点为($\frac{1}{2}$,$\frac{3}{2}$),
所以图纸的折痕所在的直线方程为y-$\frac{3}{2}$=x-$\frac{1}{2}$,
即x-y+1=0,
所以kCD=$\frac{n-3}{m-7}$=-1,①
CD的中点为($\frac{m+7}{2}$,$\frac{n+3}{2}$),
所以$\frac{n+3}{2}$-$\frac{3}{2}$=$\frac{m+7}{2}$-$\frac{1}{2}$②
由①②解得m=2,
故选:B.

点评 解决两点关于一条直线的对称问题,利用两点的连线斜率与对称轴斜率乘积为-1,两点的中点在对称轴上,列出方程组来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若正数x、y满足2x+y=1,则xy的范围是$(0,\frac{1}{8}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α:1≤x<4,β:x≤m,若α是β的充分条件,则实数m的取值范围是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若从区间(0,e)内随机取两个数,则这两个数之积不小于e的概率为1-$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线$\frac{{x}^{2}}{4}$-y2=1,过其右焦点F作直线l与双曲线的右支交于点A、B,求FA•FB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}满足a2=2,a6+a8=14.
(I)求数列{an}的通项公式;
(II)记bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)若对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c恒成立,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{\sqrt{9-{x}^{2}}}{3-x}$的定义域为(  )
A.{x|≠3}B.{x|≤-3或x>3}C.{x|-3<x≤3}D.{x|-3≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列三个命题中正确命题的个数为(  )
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个底面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
A.O个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案