【题目】在平面直角坐标系中,已知向量
,
,定点
的坐标为
,点
满足
,曲线
,区域
,曲线
与区域
的交集为两段分离的曲线,则( )
A.![]()
B.![]()
C.![]()
D.![]()
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x﹣a|+2x(a∈R)
(1)当a=4时,解不等式f(x)≥8;
(2)当a∈[0,4]时,求f(x)在区间[3,4]上的最小值;
(3)若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有3个不相等的实数根,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=﹣x与直线y=k(x+1)相交于A(x1 , y1),B(x2 , y2)两点,O为坐标原点.
(1)求y1y2的值;
(2)求证:OA⊥OB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°. ![]()
(1)求|
|;
(2)已知点D是AB上一点,满足
=λ
,点E是边CB上一点,满足
=λ
. ①当λ=
时,求
;
②是否存在非零实数λ,使得
⊥
?若存在,求出的λ值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差数列,数列{bn}满足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)令cn=(﹣1)n
,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是各项均为正数的等比数列a1+a2=2(
),a3+a4+a5=64
+
+
)
(1)求{an}的通项公式;
(2)设bn=(an+
)2 , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两矩形ABCD与ADEF所在的平面互相垂直,AB=1,若将△DEF沿直线FD翻折,使得点E落在边BC上(即点P),则当AD取最小值时,边AF的长是;此时四面体F﹣ADP的外接球的半径是 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是( )
A.[1﹣
,1+
]
B.(﹣∞,1﹣
]∪[1+
,+∞)
C.[2﹣2
,2+2
]
D.(﹣∞,2﹣2
]∪[2+2
,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com