精英家教网 > 高中数学 > 题目详情
9.下列函数中,是奇函数且在(0,1]上单调递减的函数是(  )
A.y=-x2+2xB.y=x+$\frac{1}{x}$C.y=2x-2-xD.y=1-$\sqrt{x}$

分析 根据奇函数图象的对称性,奇函数的定义,奇函数定义域的特点,以及增函数的定义,函数导数符号和函数单调性的关系便可判断每个选项的正误,从而找出正确选项.

解答 解:A.y=-x2+2x的图象不关于原点对称,不是奇函数,∴该选项错误;
B.$y=x+\frac{1}{x}$的定义域为{x|x≠0},且$-x+\frac{1}{-x}=-(x+\frac{1}{x})$;
∴该函数为奇函数;
$y′=\frac{{x}^{2}-1}{{x}^{2}}$,x∈(0,1]时,y′≤0;
∴该函数在(0,1]上单调递减,∴该选项正确;
C.y=2x-2-x,x增大时,-x减小,2-x减小,-2-x增大,且2x增大,∴y增大;
∴该函数在(0,1]上单调递增,∴该选项错误;
D.y=1-$\sqrt{x}$的定义域为[0,+∞),不关于原点对称,不是奇函数,∴该选项错误.
故选:B.

点评 考查奇函数的定义,奇函数定义域的特点,奇函数的图象的对称性,以及函数导数符号和函数单调性的关系,增函数的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(x,y),记$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ.若对所有满足不等式|x-2|≤y≤1的x,y,都有θ∈(0,$\frac{π}{2}$),则实数k的取值范围是(  )
A.(-1,+∞)B.(-1,0)∪(0,+∞)C.(1,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点M,N分别是空间四面体OABC的边OA和BC的中点,P为线段MN的中点,若$\overrightarrow{OP}=λ\overrightarrow{OA}+μ\overrightarrow{OB}+γ\overrightarrow{OC}$,则实数λ+μ+γ=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从点P(2,-1)向圆x2+y2-2mx-2y+m2=0作切线,当切线长最短时m的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式的值为$\frac{1}{4}$的是(  )
A.sin15°cos15°B.1-2sin275°
C.$\frac{{2tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$D.$2{cos^2}\frac{π}{12}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$=(1,1,0),$\overrightarrow{b}$=(-1,0,2),则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=3sin(2x-$\frac{π}{3}$),则下列结论正确的是(  )
A.f(x)的最小正周期为2π
B.f(x)的图象关于直线x=$\frac{π}{2}$对称
C.函数f(x)在区间上(-$\frac{π}{12}$,$\frac{5π}{12}$)是增函数
D.由函数y=3sin2x的图象向右平移$\frac{π}{3}$个单位长度可得到函数f(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),若点M在y轴上,且|MA|=|MB|,则M的坐标是(0,-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集M={1,2,3,4,5},N={2,5},则∁MN=(  )
A.{1,2,3}B.{1,3,4}C.{1,4,5}D.{2,3,5}

查看答案和解析>>

同步练习册答案