精英家教网 > 高中数学 > 题目详情
4.函数y=ax-2+1(a>0,a≠1)的图象必过(  )
A.(0,1)B.(2,2)C.(2,0)D.(1,1)

分析 由a0=1令x-2=0,求出x的值,再求出对应y的值即可.

解答 解:∵a0=1,
∴令x-2=0,则x=2,
故y=1+1=0,
故函数y=ax-2-1的图象必过定点(2,2).
故选:B.

点评 本题考查了指数函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知f(x)=$\left\{\begin{array}{l}{x-3(x≥9)}\\{f[f(x+4)](x<9)}\end{array}\right.$,则f(8)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)解方程4x-2x-2=0.
(2)求不等式 log2(2x+3)>log2(5x-6);
(3)求函数y=($\frac{1}{3}$)${\;}^{{x}^{2}-4x}$,x∈[0,5)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知ω>0,函数f(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上单调递减,则实数ω的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=${0.6^{\frac{1}{2}}}$,b=${0.6^{\frac{1}{3}}}$,c=log0.63,则(  )
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在R上单调递增的是(  )
A.y=|x|B.y=log2xC.y=x3D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,a,b,c分别是角A,B,C的对边,A,B是锐角,c=10,且$\frac{cosA}{cosB}=\frac{b}{a}=\frac{4}{3}$.
(1)证明角C=90°;    
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A(-1,1),B(2,2),若直线l过点P(0,-1),且对线段AB相交,则直线l的斜率取值范围是k≤-2或k≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若集合A={y|y=x2-2x,x∈R},B={y|y=-x2+6x+10,x∈R},则A∩B={y|-1≤y≤19}.

查看答案和解析>>

同步练习册答案