精英家教网 > 高中数学 > 题目详情
7.若数列{an}满足$\frac{a_1}{1}$+$\frac{a_2}{3}$+…+$\frac{a_n}{2n-1}$=$\frac{9}{4}$-$\frac{{{4^{n+1}}}}{5^n}$,且对任意的n∈N*,存在m∈N*,使得不等式an≤am恒成立,则m的值是5.

分析 通过作差可知数列{an}的通项公式,计算出数列的前几项即可判断出数列的变化规律,进而即得结论.

解答 解:∵$\frac{a_1}{1}$+$\frac{a_2}{3}$+…+$\frac{a_n}{2n-1}$=$\frac{9}{4}$-$\frac{{{4^{n+1}}}}{5^n}$,
∴当n≥2时,$\frac{a_1}{1}$+$\frac{a_2}{3}$+…+$\frac{{a}_{n-1}}{2n-3}$=$\frac{9}{4}$-$\frac{{4}^{n}}{{5}^{n-1}}$,
两式相减得:$\frac{a_n}{2n-1}$=$\frac{{4}^{n}}{{5}^{n-1}}$-$\frac{{{4^{n+1}}}}{5^n}$=$\frac{{4}^{n}}{{5}^{n}}$,
∴an=(2n-1)•$(\frac{4}{5})^{n}$(n≥2),
又∵$\frac{a_1}{1}$=$\frac{9}{4}$-$\frac{16}{5}$=-$\frac{19}{20}$不满足上式,
∴an=$\left\{\begin{array}{l}{-\frac{19}{20},}&{n=1}\\{(2n-1)•({\frac{4}{5})}^{n},}&{n≥2}\end{array}\right.$,
∵a2=$\frac{48}{25}$,a3=$\frac{64}{25}$,a4=$\frac{1792}{625}$,a5=$\frac{9216}{3125}$,a6=$\frac{45056}{15625}$,
且易知从第六项开始数列递减,
∴m=5,
故答案为:5.

点评 本题是一道关于数列与不等式的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.将f(x)=sinωx(ω>0)的图象向右平移$\frac{π}{6}$个单位长度后,所得图象与函数y=cosωx的图象重合,则ω的最小值是(  )
A.$\frac{1}{3}$B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是3π+4(单位:cm2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|+|x+1|.
(Ⅰ)解不等式f(x)<3;
(Ⅱ)若f(x)的最小值为m,设a>0,b>0,且a+b=m,求$\frac{1}{a}+\frac{2}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要完成下列3项抽样调查:
①从15瓶饮料中抽取5瓶进行食品卫生检查.
②某校报告厅有25排,每排有38个座位,有一次报告会恰好坐满了学生,报告会结束后,为了听取意见,需要抽取25名学生进行座谈.
③某中学共有240名教职工,其中一般教师180名,行政人员24名,后勤人员36名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体外接球的表面积为41π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=3ax2-2(a-b+1)x-b,a,b∈R,x∈[-1,1].
(1)若a+b=1,证明函数f(x)的图象必过定点;
(2)记|f(x)|的最大值为M,对任意的|a|≤1,|b|≤1,求M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=x$\sqrt{3-{x}^{2}}$(x>0)的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|x-a<0},B={x|x2-2x-3<0},若B⊆A,则实数a的取值范围是a≥3.

查看答案和解析>>

同步练习册答案