精英家教网 > 高中数学 > 题目详情
16.函数y=x$\sqrt{3-{x}^{2}}$(x>0)的最大值是$\frac{3}{2}$.

分析 由题意可得x>0,3-x2≥0,可得0<x≤$\sqrt{3}$,可得y=x$\sqrt{3-{x}^{2}}$=$\sqrt{{x}^{2}}$•$\sqrt{3-{x}^{2}}$,再由基本不等式可得最大值及x的取值.

解答 解:由x>0,3-x2≥0,可得0<x≤$\sqrt{3}$,
则y=x$\sqrt{3-{x}^{2}}$=$\sqrt{{x}^{2}}$•$\sqrt{3-{x}^{2}}$
≤$\frac{{x}^{2}+3-{x}^{2}}{2}$=$\frac{3}{2}$,
当且仅当x2=3-x2,即x=$\frac{\sqrt{6}}{2}$时,
取得最大值$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查基本不等式的运用:求函数的最值,注意运用变形和满足的条件:一正二定三等,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知A,B,C是球面上三点,且AB=6,BC=8,AC=10,球心O到平面ABC的距离等于该球半径的$\frac{1}{2}$,则此球的表面积为(  )
A.$\frac{100}{3}$πB.$\frac{200}{3}$πC.$\frac{400}{3}$πD.$\frac{400}{9}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若数列{an}满足$\frac{a_1}{1}$+$\frac{a_2}{3}$+…+$\frac{a_n}{2n-1}$=$\frac{9}{4}$-$\frac{{{4^{n+1}}}}{5^n}$,且对任意的n∈N*,存在m∈N*,使得不等式an≤am恒成立,则m的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某街心花园有许多钢球(钢的密度为7.9g/cm3),每个钢球重145kg,并且外径等于50cm,试根据以上数据,判断钢球是空心的还是实心的,如果是空心的,请你计算出它的内径(π取3.14,结果精确到1cm,2.243≈11.24098).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2-2x+2,f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,则f2016(x)在[1,2]上的最小值,最大值分别是(  )
A.0,1B.0,2C.1,2D.1,4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{{x^2}+2x-3}$的递减区间是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在数列{an}中,an>0,a1=$\frac{1}{2}$,如果an+1是1与$\frac{{2{a_n}{a_{n+1}}+1}}{4-a_n^2}$的等比中项,那么a1+$\frac{a_2}{2^2}$+$\frac{a_3}{3^2}$+$\frac{a_4}{4^2}$+…$\frac{{{a_{99}}}}{{{{99}^2}}}$的值是$\frac{99}{100}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取得极小值,则a的取值范围是(  )
A.-1≤a<0B.a>0或a≤-1C.-1<a<0D.a>0或a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,Sn为数列{an}的前n项和,若S10=10,S20=30,则S30=70.

查看答案和解析>>

同步练习册答案